曲柄(导杆)滑块机构设计分析外文翻译
《曲柄(导杆)滑块机构设计分析外文翻译》由会员分享,可在线阅读,更多相关《曲柄(导杆)滑块机构设计分析外文翻译(8页珍藏版)》请在毕设资料网上搜索。
1、Mechanism Introduction to Mechanism Mechanisms may be categorized in several different ways to emphasize their similarities and differences. One such grouping divides mechanisms into planar, sphe-rical, and spatial categories. All three groups have many things in common; the criterion, which disting
2、uishes the groups, however, is to be found in the characteristics of the motions of the links. A planar mechanism is one in which all particles describe plane curves in space and all these curves lie in parallel planes; i. e., the loci of all points are plane curves parallel to a single common plane
3、. This characteristic makes it possible to represent the locus of any chosen point of a planar mechanism in its true size and shape on a single drawing or figure. The motion transformation of any such mechanism is called coplanar. The plane four-bar linkage, the plate cam and follower, and the slide
4、r-crank mechanism are familiar examples of planar mechanisms. The vast majority of mechanisms in use today are planar. A spherical mechanism is one in which each link has some point which remains stationary as the linkage moves and in which the stationary points of all links lie at a common location
5、; i.e., the locus of each point is a curve contained in a spherical surface, and the spherical surfaces defined by several arbitrarily chosen points are all concentric. The motions of all particles can therefore be completely described by their radial projections, or shadows, on the surface of a sph
6、ere with properly chosen center. Hookes universal joint is perhaps the most familiar example of a spherical mechanism. Spherical linkages are constituted entirely of revolute pairs. A spheric pair would produce no additional constraints and would thus be equivalent to an opening in the chain, while
7、all other lower pairs have nonspheric motion. In spheric linkages, the axes of all revolute pairs must intersect at a point. Spatial mechanisms, include no restrictions on the relative motions of the particles. The motion transformation is not necessarily coplanar, nor must it be concentric. A spati
8、al mechanism may have particles with loci of double curvature. Any linkage which contains a screw pair, for example, is a spatial mechanism, since the relative motion within a screw pair is helical. Thus, the overwhelming large category of planar mechanisms and the category of spherical mechanisms a
9、re only special cases, or subsets, of the all-inclusive category spatial mechanisms. They occur as a consequence of special geometry in the particular orientations of their pair axes: If planar and spherical mechanisms are only special cases of spatial mechanisms, why is it desirable to identify the
10、m separately?Because of the particular geometric conditions, which identify these types, many simplifications are possible in their design and analysis. As pointed out earlier, it is possible to observe the motions of all particles of a planar mechanism in true size and shape from a single direction
11、. In other words, all motions can be represented graphically in a single view. Thus, graphical techniques are well suited to their solution. Since spatial mechanisms do not all have this fortunate geometry, visualization becomes more difficult and more powerful techniques must be developed for their
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中设计图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲柄 导杆 机构 设计 分析 外文 翻译
