水利水电工程专业毕业设计外文翻译
《水利水电工程专业毕业设计外文翻译》由会员分享,可在线阅读,更多相关《水利水电工程专业毕业设计外文翻译(7页珍藏版)》请在毕设资料网上搜索。
1、 中文 2200 字 外文原文 Experiments in Fluids 27 (1999) 339 350 Springer-Verlag 1999 Underflow of standard sluice gate A. Roth, W. H. Hager 1. Introduction Gates are a hydraulic structure that allows regulation of an upstream water elevation. Among a wide number of gate designs, the so-called standard gate
2、with a vertical gate structure containing a standard crest positioned in an almost horizontal smooth rectangular channel has particular significance in low head applications. Surface roughness of both the channel and the gate is small and thus insignificant. Standard gates are used both in laborator
3、ies and in irrigation channels, large sewers or in hydraulic structures. Compared to overflow structures, or in particular to the sharp-crested weir, standard gates have received scarce attention. The knowledge is particularly poor regarding the basic hydraulics, whereas studies relating to vibratio
4、n of these gates are available. The present project describes new findings on standard gate flow, involving: (1) Scale effects; (2) Coefficient of discharge; (3) Surface Ridge; (4) Features of shock waves; (5) Velocity field; (6) Bottom and gate pressure distributions; (7) Corner vortices; and (8) V
5、ortex intensities. A novel device to reduce shock waves in the downstream channel is also proposed. 2. Present knowledge The present knowledge on gates was recently summarized by Lewin (1995). There is a short chapter on vertical gates containing some information on discharge and contraction coeffic
6、ients,with a relatively large scatter of data. This reflects the present state, and gate flow is far from being understood from this point of view, therefore. Historical studies on underflow gates are available, and it is currently a common belief that the discharge character is tics of vertical gat
7、es have been detailed in the past century. This is definitely not the case, because of the accuracy of discharge measurement, and the small hydraulic models often used. Well known approaches include those of Boileau (1848), Bor-nemann (1871, 1880), containing summaries of the experiments of Lesbros
8、et al. Haberstroh (1890), Gibson (1920),Hurst and Watt (1925), Keutner (1932, 1935), Fawer (1937),Escande(1938), Gentilini(1941), and Smetana(1948). In these historical experimental studies, the exact geometrical configurations are often poorly specified, and the data are not always available. Detai
9、ls of gate fixation are also not described. The first modern study relating to free gate flow was conducted by Rajaratnam and Subramanya (1967). The coefficient of discharge was related to the difference of flow depths in the up- and downstream sections hCa, where o c h approach flow depth, coeffici
10、ent of contraction and o c agate opening. According to observations for both free and submerged flow C is exclusively a function of the relative gated opening a/h , and C increases slightly as a/h increases,o d o starting from C0.595. The effect of skin friction was stated d to be there as on for de
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中设计图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水利水电工程 专业 毕业设计 外文 翻译
