《液压外文翻译》由会员分享,可在线阅读,更多相关《液压外文翻译(9页珍藏版)》请在毕设资料网上搜索。
1、 毕业论文(设计) 外文翻译 题 目 : 什么是液压 系部名称: 机械工程 系 专业班级: 学生姓名: 学 号: 指导教师: 教师职称 : 副教授 2011 年 03 月 10 日 1 什么是液压? 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、无件和液压油。动力元件的作用是将原动机的机械 能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执行元件 (如液压缸和液压马达 )的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。控制元件 (即各种液压阀 )在液压系统中控制和调节液体的压力、流量和方
2、向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀 (安全阀 )、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根 据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类 。 液压的原理 它是由两个大小不同的液缸组成的,在液缸里充满水或油。充水的叫 “ 水压机 ” ;充油的称 “ 油压机 ” 。两个液缸里各有一个
3、可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压强传递给大活塞,将大活塞顶上去。设小活塞的横截面积是 S1,加在小活塞上的向 下的压力是 F1。于是,小活塞对液体的压强为 P=F1/SI, 能够大小不变地被液体向各个方向传递 ” 。大活塞所受到的压强必然也等于 P。若大活塞的横截面积是 S2,压强 P在大活塞上所产生的向上的压力 F2=PxS2 截面积是小活塞横截面积的倍数。从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等。 液压传动的发展史 液压传动和气压传动称为流体传动,是根据 17
4、 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术, 1795 年英国约瑟夫 布拉曼 (Joseph Braman,1749-1814),在伦敦用水作为工作介质 ,以水压机的形式将其应用于工业上 ,诞生了世界上第一台水压机。 1905 年将工作介质水改为油 ,又进一步得到改善。 第一次世界大战 (1914-1918)后液压传动广泛应用 ,特别是 1920 年以后 ,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的 20 年间 ,才开始进入正规的工业生产阶段。1925 年维克斯 (F.Vikers)发明了压力平衡式叶片泵 ,为近代液压元件工业或液压传动 的逐步建立奠定了基础。
5、 20 世纪初康斯坦丁 尼斯克 (GConstantimsco)对能量波动传递 2 所进行的理论及实际研究 ;1910 年对液力传动 (液力联轴节、液力变矩器等 )方面的贡献,使这两方面领域得到了发展。 第二次世界大战 (1941-1945)期间 ,在美国机床中有 30%应用了液压传动。应该指出 ,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动 ,1956 年成立了 “ 液压工业会 ” 。近 2030 年间,日本液压传动发展之快,居世界领先地位。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压 力机械、机床等;
6、行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 齿轮泵 齿轮泵的概念是很简单的,即它的最基本形式就是两个尺寸相同的齿轮在一个紧密配合的 壳体内相互啮合旋转,这个壳体的内部类似 “8” 字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合
7、。来自于挤出机的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。 在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量 是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。 实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到 100,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体 100地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到 93 98的效率。 对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。如 果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将