1、浅谈数形结合思想在教学中的应用浅谈数形结合思想在教学中的应用 摘摘 要要 数形结合就是把问题的数量关系和空间形式结合起来考察,根据解决问题的需要,可 以把数量关系的问题转化为图形的性质问题去讨论,或者把图形的性质问题转化为数量关 系的问题来研究,简言之“数形相互取长补短” 。 数形结合作为一种常见的数学方法, 沟 通了代数、三角与几何的内在联系。一方面,借助于图形的性质可以将许多抽象的数学概 念和数量关系形象化、 简单化,给人以直觉的启示。 另一方面,将图形问题转化为代数问题, 以获得精确的结论。因此,数形结合不应仅仅作为一种解题方法,而应作为一种十分重要 的数学思想方法, 它可以拓宽学生的解
2、题思路, 提高他们的解题能力,将它作为知识转化 为能力的“桥”。 关键词关键词: : 数形结合思想;直观;数学教学;应用 1 Discusses the number shape union thought shallowly in the teaching application ABSTRACT Counts the shape union is unifying the question stoichiometric relation and the space form to inspect, according to solving the question need, we can
3、 transform the stoichiometric relation question for the graph nature question discusses, or transform the graph nature question for the stoichiometric relation question studies, “the number shape makes up for ones deficiency by learning from others strong points mutually in short”. Counts the shape
4、union as one common mathematical method, has communicated the algebra, the triangle and the geometry inner link. On one hand, with the aid in the graph nature may make many abstract mathematics concepts and the stoichiometric relation visualization and simplification, for the human by the intuition enlightenment. On the other hand, transforming the graph question as the algebra question, obtains the precise conclusion. Therefore, counts the shape union not to take one problem solving method