1、 1 车牌识别系统的设计车牌识别系统的设计 一、一、 摘要摘要: : 随这图形图像技术的发展, 现在的车牌识别技术准确率越来越高, 识别速度越来越 快。无论何种形式的车牌识别系统,它们都是由触发、图像采集、图像识别模块、辅助 光源和通信模块组成的。车牌识别系统涉及光学、电器、电子控制、数字图像处理、计 算视觉、人工智能等多项技术。触发模块负责在车辆到达合适位置时,给出触发信号, 控制抓拍。 辅助光源提供辅助照明, 保证系统在不同的光照条件下都能拍摄到高质量的 图像。图像预处理程序对抓拍的图像进行处理,去除噪声,并进行参数调整。然后通过 车牌定位、字符识别,最后将识别结果输出。 二、二、 设计目
2、的和意义设计目的和意义: : 设计目的设计目的: 1、让学生巩固理论课上所学的知识,理论联系实践。 2、锻炼学生的动手能力,激发学生的研究潜能,提高学生的协作精神。 设计意义设计意义: 车牌定位系统的目的在于正确获取整个图像中车牌的区域, 并识别出车牌号。 通过 设计实现车牌识别系统, 能够提高学生分析问题和解决问题的能力, 还能培养一定的科 研能力。 三、三、 设计原理设计原理: : 牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动 识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集 设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、
3、车牌字符分割算法和 光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能 称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别 等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。 牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别, 然后组成牌照号码输出。 四、四、 详细设计步骤详细设计步骤: : 2 1. 1. 提出总体设计方案提出总体设计方案: : 牌照号码、颜色识别 为了进行牌照识别,需要以下几个基本的步骤: a.牌照定位,定位图片中的牌照位置; b.牌照字符分割,把牌照中的字符分割出来
4、; c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。 牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常 与牌照识别互相配合、互相验证。 (1)牌照定位: 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照 区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合 汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后 选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。 流程图: 导入原 始图像 图像预处理增 强效果图像 边缘提取 车牌定位 对图像开 闭运算 3 (2)牌照字符分割 : 完成
5、牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割 一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取 得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一 些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 (3)牌照字符识别 : : 字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。 基于模板匹配 算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小, 然后 与所有的模板进行匹配,最后选最佳匹配作为结果。基于人工神经元网络的算法有两种: 一种是先对待识别字符进行特征提
6、取,然后用所获得特征来训练神经网络分配器;另一 种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。实际 应用中,牌照识别系统的识别率与牌照质量和拍摄质量密切相关。牌照质量会受到各种 因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、 多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素 的影响。这些影响因素不同程度上降低了牌照识别的识别率,也正是牌照识别系统的困 难和挑战所在。为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光 照条件,使采集到的图像最利于识别。 2. 2. 各模块的实现各模块的实现: : 2.1 输入待处理的原始图像: clear ; close all; %Step1 获取图像 装入待处理彩色图像并显示原始图像 Scolor = imread(3.jpg);%imread 函数读取图像文件 按左右宽度 切割出字符 计算水平投影进 行车牌水平校正 去掉车牌 的框架 分析垂直投影找到每 个字符中心位置 切割出的字 符送入库中 字符依次分析显示误 差最小