1、 凸函数及其应用凸函数及其应用 目 录 摘要.I Abstract . II 第一章 绪论 1 1.1 凸函数的产生. 1 1.2 凸函数的发展. 1 第二章 凸函数的定义及判定 2 2.1 凸函数的国际定义 2 2.2 凸函数的几何意义 2 2.3 凸函数的判定 3 第三章 凸函数的定义及性质的应用 4 3.1 凸函数定义的应用. 4 3.2 凸函数的性质. 6 3.3 凸函数性质的应用. 7 第四章 结论 8 参考文献 9 致谢 10 附录 11 I 摘要 凸函数是一种具有特殊性质的函数, 在函数的研究领域中占有十分重要的地 位.到目前为止,凸函数的研究已经从定义的研究到凸性的研究,再到凸
2、性应用 的方面的研究.对函数凹凸性的研究, 在数学分析的多个分支都有用处.特别是在 函数图形的描绘和不等式的推导方面,凸函数起着十分重要的作用.凸函数有其 独特的良好性质,由于凸函数理论的广泛性,及其在数学各个领域都有广泛的应 用.因此,对凸函数的理论进一步深入地研究和推广,就显得尤为重要. 凸函数作为数学分析中一类特殊的函数, 在实际课本中一般只介绍其定义以 及判定,然而它在证明不等式中具有得天独厚的功用,却极少涉及.所以,探讨 一些凸函数性质,并且利用这些性质证明一些初等数学无法证明的不等式,用以 说明凸函数在不等式中的应用,是十分重要的.而且凸函数与一搬函数之间已有 着千丝万缕的联系,利
3、用其解决一般函数的相关问题也有着事半功倍的效果. 关键词:关键词: 凸函数 性质 不等式 应用 II Abstract The convex function is a special kind of function, occupies a very important position in the research field of function. So far, research of convex function from to the convexity of the study definition, research and then to convex applicat
4、ions. Research on the concavity and convexity of functions, are useful in a branch of mathematical analysis. Especially in the derived function of graphic descriptions and inequality, convex function plays a very important role. It has good properties of convex function is unique, because of the ext
5、ensive theory of convex function in mathematics, and they are widely used in all fields. Therefore, the theory of convex function further deep research and promotion, is particularly important. Convex function is a kind of special function in mathematical analysis, in the actual text generally intro
6、duces its definition and judgment, however it has be richly endowed by nature function in proving inequalities, but rarely involved. Therefore, summarizes some of the properties of convex function, inequality and use these properties to prove some elementary mathematics cannot prove, in order to explain application of convex function in inequality, is very important. And the convex function with a move function between already have all kinds of connections with contact, use the relevant probl