1、 1 前言前言 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直 流电,也称为直接直流-直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将 直流电变为另一直流电的情况,不包括直流-交流-直流的情况。习惯上,DC-DC 变换器 包括以上两种情况。 直流斩波电路的种类较多,包括 6 种基本斩波电路:降压斩波电路,升压斩波电路, 升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和 Zeta 斩波电路,其中前两种是最基 本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解 其他的电路打下基础。 利用不同的基本斩波电路
2、进行组合,可构成复合斩波电路,如电流可逆斩波电路、 桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电 路。 直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。全控 型器件选择绝缘栅双极晶体管(IGBT)综合了 GTR 和电力 MOSFET 的优点,具有良好的 特性。目前已取代了原来 GTR 和一部分电力 MOSFET 的市场,应用领域迅速扩展,成为 中小功率电力电子设备的主导器件。 MATLAB 是矩阵实验室 Matrix Laboratory 的简称,是美国 MathWorks 公司出品的商 业数学软件,用于算法开发、数据可视化、数据分析以及数值
3、计算的高级技术计算语言 和交互式环境,SIMULINK 是 MATLAB 软件的扩展它是实现动态系统建模和仿真的一个软 件包,本课程设计的仿真即需要在 SIMULINK 中来完成电路的仿真与计算。通过系统建 模和仿真,掌握和运用 MATLAB/SIMULINK 工具分析系统的基本方法。 2 1.1.设计思路与框图设计思路与框图 1.1 设计思路 本课程设计主要应用了MATLAB 软件及其组件之一SIMULINK进行系统的设计与仿真 系统主要包括:BUCK降压斩波主电路部分、PWM控制部分和负载。BUCK降压斩波主电路 部分拖动带反电动势的电阻负载, 模拟现实中一般的负载, 若实际负载中没有反电
4、动势, 只需令其为零即可 1。 PWM控制部分为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现 整个系统的运行。在SIMULINK中完成各个功能模块的绘制后,即可进行仿真和调试,用 SIMULINK提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完 成整个BUCK变换器的研究与设计 2。 1.2系统框图 系统框图如图1所示: 图1 BUCK变换器系统结构总框图 2.2.PWMPWM控制器的设计控制器的设计 2.1 PWM控制的基本原理 脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。 它是利用微处理器的数字输出
5、来对模拟电路进行控制的一种非常有效的技术,广泛应用 于测量、通信、功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化 来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的 改变,这种方式能使电源的输出电压在工作条件变化时保持恒定 3。 2.2 PWM波的分类 根据PWM波形的幅值是否相等,PWM波可分为等幅PWM波和不等幅PWM波。由直流电源 产生的PWM波通常是等幅PWM波,如直流斩波电路和PWM整流电路等;当输入电源是交流 PWM 脉冲产生 BUCK 降压斩波 电路 负载 3 时,得到的即为不等幅PWM波,都基于面积等效原理,本质是相同的。根据所控制电路
6、 的不同,PWM波又可分为电压波和电流波 4。 2.3 PWM的产生原理 PWM可以通过芯片和软件来实现, 在此我选择的是软件实现, 通过对单片机的P3的第 七个管脚编程来产生40KHZ的PWM,其占空比是56%。其原理图如图2所示: 图2 PWM产生电路图 2.4 PWM放大原理 由单片机产生的PWM的一个缺点就是驱动能力不足, 所以在单片机的P3的第七个管脚 需要加一个驱动电路,需要使用芯片IR2101来获得足够大的电压来驱动场效应管。如图 3所示为IR2101的芯片管脚: 图3 IR2101引脚图 其引脚作用如图4所示: 4 图4 管脚功能图 其连接方式如图5: 图5 管脚连接图 3.3.BUCKBUCK变换器的设计变换器的设计 3.1 BUCK变换器的基本原理 BUCK电路是由晶体开关管V、续流二极管VD和LC输出滤波器组成,图中RL表示负载。 其电路图如图6: 图6 BUCK降压斩波电路图 5 稳态时,V周期性的导通和关断,将直流输入电压斩波、生成脉宽为TON的矩形波脉 冲电压;然后再由LC滤波器滤波,当LC足够大时输出电压的纹波足够小