1、 最最 优优 化化 方方 法法 课课 程程 设设 计计 题 目:最速下降法算法分析与实现 院 系: 数学与计算科学学院 专 业: 数学与应用数学 姓名学号: XXX XXXXXXXX 指导教师: XXX 日 期: 2014 年 01 月 11 日 摘摘 要要 在各种优化算法中,下降梯度法是非常重要的一种.本文主要介绍的最速下 降法是一种无约束优化算法,它具有线性收敛速度,而且算法结构简单,容易编 程实现. 在本次课设中,我首先分析无约束问题的最优性条件,根据其求解的充分必 要条件列出四个定理,运用最速下降法进行无约束优化问题的求解.无约束最优 化方法的核心问题是选择搜索方向.最速下降法的基本思
2、想是以负梯度方向作为 极小化方法的下降方向,并沿下降方向进行搜索,求出目标函数的极小点.再结 合该算法编写matlab程序,求解无约束优化问题,最后分析结果得出最速下降 法的优缺点. 最速下降法又称为梯度法,是解析法中最古老的一种,其他解析方法或是它 的变形,或是受它的启发而得到,因此它是最优化方法的基础,在最优化方法中 占有非常重要的地位.最速下降法是错误错误! !未找到引用源。未找到引用源。 元函数的非线性无约束 规划问题错误错误! !未找到引用源。未找到引用源。的一种重要解析法,优点是工作量少,存储变量 较少,初始点要求不高;缺点是收敛慢,效率不高,有时达不到最优解. 关键词关键词:一维
3、搜索;线性收敛;梯度;无约束优化 AbstractAbstract In a variety of optimization algorithms, steepest descent method is a very important one. In this paper, we mainly introduce the steepest descent method ,it has convergence rate and the algorithm is simple and easy programming. In this experiment, we first analyze t
4、he unconstrained conditions of the unconstrained optimization problems.Using the steepest descent method to solve the unconstrained optimization problems. Unconstrained optimization method is to select the core issue of the search direction. The basic idea of steepest descent method is treating the
5、negative gradient direction as the down direction of minimization method, then, along the down direction to search combining write the MATLAB program, finally, analysis the advantages and disadvantages of the method. The steepest descent method is also called as the gradient method. Other methods or
6、 its deformation, or inspired by it. So it occupies a very important position . The steepest descent method is the n nonlinear unconstrained programming function 错误错误! !未找到引用源。未找到引用源。 analytical method. It is less workload, less storage variable, initial request is not high; Defect is convergence slow, inefficient, sometimes cant reach the optimal solution. Key words: Key words: One dimensional search; Linear convergence; Gradient; Unconstrained optimization