欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译---自适应维纳滤波方法的语音增强

    • 资源ID:1390543       资源大小:645.33KB        全文页数:25页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译---自适应维纳滤波方法的语音增强

    1、PDF外文:http:/ Computing andCommunication Journal附  录   ADAPTIVE WIENER FILTERING APPROACH FOR SPEECH ENHANCEMENT  M. A. Abd El-Fattah*, M. I. Dessouky , S. M. Diab and F. E. Abd El-samie # Department of Electronics and Electrical communications, Faculty ofElectronicEngineeringMenoufia

    2、University, Menouf, Egypt E-mails: * maro_ , # fathi_  ABSTRACT This paper proposes the application of the Wiener filter in an adaptive manner in speech enhancement. The proposed adaptive Wiener filter depends on the adaptation of thefilter transfer function from sample to sample based on the s

    3、peech signal statistics(meanand variance). The adaptive Wiener filter is implemented in time domain rather than infrequency domain to accommodate for the varying nature of the speech signal. Theproposed method is compared to the traditional Wiener filter and spectral subtractionmethods and the resul

    4、ts reveal its superiority.  Keywords: Speech Enhancement, Spectral Subtraction, Adaptive Wiener Filter  1 INTRODUCTION  Speech enhancement is one of the mostimportant topics in speech signal processing.Several techniques have been proposed for thispurpose like the spectral subtraction

    5、 approach, thesignal subspace approach, adaptive noise cancelingand the iterative Wiener filter1-5 . Theperformances of these techniques depend onquality and intelligibility of the processed speechsignal. The improvement of the speech signal-tonoiseratio (SNR) is the target of most techniques. Spect

    6、ral subtraction is the earliest method forenhancing speech degraded by additive noise1.This technique estimates the spectrum of the clean(noise-free) signal by the subtraction of theestimated noise magnitude spectrum from the noisysignal magnitude spectrum while keeping the phasespectrum of the nois

    7、y signal. The drawback of thistechnique is the residual noise. Another technique is a signal subspaceapproach 3. It is used for enhancing a speechsignal degraded by uncorrelated additive noise orcolored noise 6,7. The idea of this algorithm isbased on the fact that the vector space of the noisysigna

    8、l can be decomposed into a signal plus noisesubspace and an orthogonal noise subspace.Processing is performed on the vectors in the signalplus noise subspace only, while the noise subspaceis removed first. Decomposition of the vector spaceof the noisy signal is performed by applying aneigenvalue or

    9、singular value decomposition or byapplying the Karhunen-Loeve transform (KLT)8.Mi. et. al. have proposed the signal / noise KLTbased approach for colored noise removal9. Theidea of this approach is that noisy speech framesare classified into speech-dominated frames andnoise-dominated frames. In the

    10、speech-dominatedframes, the signal KLT matrix is used and in thenoise-dominated frames, the noise KLT matrix isused. In this paper, we present a new technique toimprove the signal-to-noise ratio in the enhancedspeech signal by using an adaptive implementationof the Wiener filter. This implementation

    11、 isperformed in time domain to accommodate for thevarying nature of the signal. The paper is organized as follows: in sectionII, a review of the spectral subtraction technique ispresented. In section III, the traditional Wienerfilter in frequency domain is revisited. Section IV,proposes the adaptive

    12、 Wiener filtering approach forspeech enhancement. In section V, a comparativestudy between the proposed adaptive Wiener filter,the Wiener filter in frequency domain and thespectral subtraction approach is presented.  2 SPECTRAL SUBTRACTION  Spectral subtraction can be categorized as anon-p

    13、arametric approach, which simply needs anestimate of the noise spectrum. It is assume thatthere is an estimate of the noise spectrum that istypically estimated during periods of speakersilence. Let x(n) be a noisy speech signal : x(n) = s(n) + v(n)               &n

    14、bsp;           (1) where s(n) is the clean (the noise-free) signal, andv(n) is the white gaussian noise. Assume that thenoise and the clean signals are uncorrelated. Byapplying the spectral subtraction approach thatestimates the short term magnitude spectrum of thenoise-free

    15、 signal S by subtraction of theestimated noise magnitude spectrum )(V fromthe noisy signal magnitude spectrum X  It issufficient to use the noisy signal phase spectrum asan estimate of the clean speech phasespectrum,10: XjNXS e x p                 (2) The

    16、 estimated time-domain speech signal isobtained as the inverse Fourier transform ofS . Another way to recover a clean signal s(n)from the noisy signal x(n) using the spectralsubtraction approach is performed by assumingthat there is an the estimate of the power spectrumof the noisePv( ) , that is ob

    17、tained by averagingover multiple frames of a known noise segment.An estimate of the clean signal short-time squaredmagnitude spectrum can be obtained as follow 8: o t h e r w i s e vPXifvPXS ,0 0, 222                         (3) It is possible combine this magnitude spectrumestimate with the measured phase and then get theShort Time Fourier Transform (STFT) estimate asfollows:


    注意事项

    本文(外文翻译---自适应维纳滤波方法的语音增强)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583