1、 本科毕业设计说明书(论文) 第 1 页 共 40 页 1 引言 1 1 概述 能源是人类赖以生存的基础,随着全球工业的迅猛发展,能源问题越来越为人们所关注。但是在许多能源利用系统中(如太阳能系统、建筑物空调和采暖系统、冷热电联产系统、废热利用系统等)存在着能量供应和需求之间时间性的差异,即存在着供能和耗能之间的不协调性,从而造成了能量利用的不合理性和大量浪费。有效解决这些问题的技术途径之一就是采用储能系统,它是缓解能量供求双方在时间、强度及地点上不匹配的有效方式,是合理利用能源及减轻环境污染的有效途径,是广义热能系统优化运行的重要手段,而且使相应系统可按平 均负荷设计,节约系统的初投资,对电
2、网负荷峰、谷时间段电价分计的地区,它还可降低系统的运行费用。 热能储存的方式主要有显热储热、潜热储热和化学反应储热等三种。显热储热主要是利用蓄热材料的温度变化来储存热能,其蓄热密度小,温度波动较大。但这种蓄热材料本身可以从自然界直接获得,如水,岩石活卵石材料等,化学稳定性好,价廉易得。在传热方面,可以采用直接接触式换热,或者传热流体本身就是蓄热介质,因而蓄、放热过程中强化传热技术相对比较简单,成本低。 潜热储热也称相变蓄热,是利用相变材料( PCM)的相转变潜热进行热能储存, 具有蓄热密度高、温度波动小(储、放热过程近似等温)、过程易控制等特点 1-3。发生的相变过程有四种,常被利用的相变过程
3、有固 -液、固 -固相变两种类型,而固 -气和液 -气相变虽然可以储存较多热量,但因气体占有的体积大,使体系增大,设备复杂,所以一般不用于储热。固 -液相变是通过相变材料的熔化过程进行热量储存,通过相变材料的凝固过程来放出热量。而固 -固相变则是通过相变材料在发生相变时固体分子晶体结构有序 -无序的转变而可逆地进行储、放热。 化学反应储热是利用可逆化学反应通过热能与化学热的转换储热的,它在受热和受冷时可 发生可逆反应,分别对外吸热或放热,这样就可把热能储存起来。其主要优点是蓄热量大,而且如果反应过程能用催化剂或反应物控制,可长期蓄存热量。 综合比较三种热能储存方式,相变蓄热以其储热密度大、蓄热
4、器结构紧凑、体积小、热效率高、吸放热温度恒定、易与运行系统匹配、易于控制等突出的优点,日趋成为储热系统的首选系统,在许多节能和新能源利用领域具有诱人的应用前景,因而对相变蓄 本科毕业设计说明书(论文) 第 2 页 共 40 页 热材料、相变蓄热器的研究得到了国内外学者的广泛关注。 1.2 文献综述 1.2.1 相变蓄热材料的研究 相变 材料就是一种能把过程余热、废热或太阳 能吸收并储存起来,在需要的时候再把它释放出来的物质。它的种类很多,从材料的化学组成来看,可分为无机及有机材料(包括高分子类)两类;从储热方式来看,可分为显热、潜热及反应储热三种;从储热的温度来看,可分为高温及低温等类型。 图
5、 1.1 蓄热材料分类示意图 1 理想的蓄热材料应符合以下条件: ( 1)热力学条件 合适的相变温度,因为相变温度正是所需要控制的特定温度,对显热储存材料要求材料的热容大,对潜热储存材料要求相变潜热大,对反应热要求反应的热效应大;材料的热导率高,要求材料无论是液态还是固态,都有较高的热导率 ,以使热量可以方便的存入和取出;性能稳定,可以反复使用熔析和副反应;在冷、热状态下或固、液状态下,材料的密度大,从而体积能量密度大,相变时体积变化小,蒸气压低,使之不易挥发损失。 ( 2)化学条件 腐蚀性小、与容器相容性好、无毒、不易燃、无偏析倾向、熔化或凝固时不分层;对潜热型材料,要求凝固时无过冷现象,熔
6、化时温度变化小;稳定性好。在多组分时,各组分之间的结合要牢固,不能发生离析、分解及其它变化,使用安全,不易燃、易爆或氧化变质。符合绿色化学要求,无毒、无腐蚀、无污染。 ( 3)经济条件 成本低廉,制备方便,便 宜易得。 本科毕业设计说明书(论文) 第 3 页 共 40 页 在实际研制过程中,要找到满足所有这些条件的相变材料非常困难。因此,人们往往考虑有合适的相变温度和有较大的相变潜热的储热材料,而后再考虑其它因素的影响。 国外对蓄热材料的研究工作早在 20 世纪 70 年代就已开始。最早是以节能为目的,从太阳能和风能的利用及废热回收,经过不断地发展,逐渐扩展到化工、交通、能源、电子等领域。其中
7、在蓄热材料的理论研究工作方面,重点对蓄热材料的组成、蓄热容量随热循环变化情况、相变寿命、储存设备等进行了详细的理论研究 4,讨论了六水氯化钠的相变热稳定性;文献 5中详尽讨论了含水 钠盐的热稳定性。文献 6中介绍了选择相变材料必须以热力学、动力学、化学、经济性准则为依据,并依靠这些准则分析比较,给出了大量的适合于低、中、高温范围内的相变材料及基本的热物理性能参数。 我国是在 20 世纪 80 年代开始着手研究蓄热材料的,而且早期主要研究对象是相变蓄热材料中的无机水合盐类,在众多的无机水合盐相变蓄热材料中, Na2SO410H2O 是开发研究最早的一种。国内主要的研究工作有: 1983 年华中师
8、范大学院德水等人对典型的无机水和盐 Na2SO410H2O 和 NaCH3COO3H2O 的成核作用进行了系 统研究; 1985 年胡起柱等人用 DSC 测定了新制备的 Na2SO410H2O-NaCl 均匀固态物质的初始熔化热及上述样品在 150.1 长时间保温后的熔化热; 1990 年哈尔滨船舶工程学院周云峰等人研制的蓄热材料是由结晶碳酸钠、结晶硫酸钠、尿素、硫酸钾、水和结晶剂组成,它具有良好的蓄热性能,原料成本低、无毒、无腐蚀性,生产时对环境不造成任何污染何产品可以数年循环使用,适用于各种温室冬季采暖,节约能源;同年,杭州大学孙鑫泉等人对 Na2SO410H2O 体系的潜热蓄热及其熔冻行为,并对熔化热的测定技术及计算公式进行 了研究。 20 世纪 90 年代中期,我国的研究重点才转向有机蓄热材料及固 -固相变蓄热材料,但研究的种类和方法还比较少。 1.2.1 相变蓄热设备的研究 相变蓄能换热设备与普通换热设备和显热储能设备相比,其突出的特点是换热设备中布置流体管道的同时需布置相变材料,并且根据相变传热的特征,相变材料与流体传热的过程中因相变材料不断发生相变而使相变材料侧的传热热阻逐渐增大,当相变材料层完全发生相变后会使系统的有效传热面积逐渐减小,从而导致流体侧的温度随之发生变化。因此采用有效的强化传热技术与设计高效的蓄热换热设备是提高潜 热蓄热效率的关键。