1、第 1 页 共 30 页 1 绪论 内弹道( internal ballistics)是弹道的一部分,内弹道研究弹丸从点火到离开发射器身管的行为。内弹道学研究对各种身管武器都有重要意义。击发方法:任何类型的身管武器第一步需要击发 火药 。最早的枪支、大炮由一个一端密封的金属管组成。 1.1 内弹道学研究对象 内弹道学 是研究发射过程中枪炮膛内及火箭发动机内的火药燃烧、物质流动、能量转换、弹体运动和其它有关现象及其规律的弹道学分支学科。燃烧的发射药产生具有很高压力的气体,使弹丸加速穿过炮膛,直到以预定初速离开炮口。初速是具有一定质量和形状的弹丸最终要达到的整个射程的基础。在设计火炮时必须进行计算
2、以保证最正常、最有效地产生所需要的初速。发射装药产生的能量用于完成 好几种工作。大部分能量用于赋予弹丸速度。能量还消耗在做下述功上:使弹丸旋转,克服弹丸与膛壁之间的摩擦力,使发射药和发射药气体在膛内运动以及使火炮后坐部分后坐。有些能量还以热能的形式损失在身管、炮尾 、弹丸和药筒(如果使用药筒的话)上 。 发射过程都是从点火开始,通过机械击发、电热或其他方式将点火药点燃,所产生的高温气体及灼热粒子再点燃火药装药,迅即扩展到整个装药表面,并同时沿着药粒厚度向内层燃烧。燃烧进行在一个封闭的空间中,这个空间前由弹丸的弹带封闭,后有火炮所采用的紧塞装置封闭,紧塞装置用于防止火药气体从后面逸出。在发射药气
3、体的压力达到能使弹丸运动的程度之前,发射药的燃烧速度与膛压增加的速度是成正比例的。所谓 “ 弹丸启动压力 ” 就是指使弹丸开始向前运动的压力。当弹丸沿身管向前运动时,供发射药气体占用的空间增大,因此膛压的增加速度减小。当空间增 加所导致的压力的增加相等时,膛压达到最大值。自此以后膛压开始下降,同时弹丸却在继续加速,甚至在发射药全部燃尽后弹丸仍在继续加速,只是加速度逐渐减小,弹丸一出炮口即变为减速。下图说明膛内压力、弹丸膛内行程和弹丸速度间的关系。 内弹道学的研究对象,主要是有关点火药和火药的热化学性质,点火和火药燃烧的机理及规律;有关枪炮膛内火药燃气与固体药粒的混合流动现象,有第 2 页 共
4、30 页 关弹带嵌进膛线的受力变形现象,弹丸和枪炮身的运动现象;有关能量转换、传递的热力学现象和火药燃气与膛壁之间的热传导现象等。 弹丸在膛内的运动大约要消耗掉发射 药产生的能量的 25-35%。其余的能量都在弹丸离开炮口后排入大气。通过增加身管长度以延长发射药气体作用于弹丸时间的方法,还有可能使弹丸初速增加。只是用这种方法增加初速也有其缺点,因为在身管增长超过一定限度后所增加的初速与所带来的缺点相权衡,是得不偿失的。从发射药燃尽点开始,弹丸速度的增加是越来越平缓的。 1.2 内弹道学研究 意义 内弹道学主要从理论和实验上对膛内的各种现象进行研究和分析,揭示发射过程中所存在的各种规律和影响规律
5、的各有关因素;应用已知规律提出合理的内弹道的方案,为武器的设计和发展提供理论依据 ;有效地利用能源及探索新的发射方式等。 利用所掌握的内弹道规律,改进现有的发射武器和设计出新型的发射武器,这是内弹道设计的研究内容。它是以内弹道方程组为基础的 ,例如根据战术技术要求所给定的火炮口径,及外弹道设计所给出的初速、弹重等主要起始数据,解出合适的炮膛结构数据、装填条件,以及相应的压力和速度变化规律。 在内弹道设计方案确定之后,方案的数据就是进一步进行炮身、炮架、药筒、弹丸、引信及发动机等部件设计的基本依据。因此,发射武器的性能在很大程度上决定于内弹道设计方案的优化程度。 火药是最常用的主要能 源。早在无
6、烟药开始应用时对于成形药粒的燃烧,就采用了全面着火、平行层燃烧的假设,并以单一药粒的燃烧规律代表整个装药的燃烧规律,称为几何燃烧定律。它是内弹道学的一个重要理论基础。长期以来,应用这个定律指导改进火药的燃烧条件,控制压力变化规律,以达到提高初速和改善弹道性能的目的。 在火炮设计中发射药在膛内的燃尽位置很重要。如果燃尽位置在膛内过于靠前,则很可能会增加耀眼的炮口焰,从而增加被敌人发现的可能性。如果燃尽位置在炮口外,则炮闩在发射药全部燃尽前有被打开的危险。在设计火炮及其装药系统时,必须非常注意这种可能 性,特别是对发射后自动开闩的火炮。使燃尽位置适当靠后还有其他一些理由,其中比较重要的是,这样做能减小各