欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译---如何为大型的步行机器人在供能不足的情况下选择合适的速度轨道

    • 资源ID:137840       资源大小:5.72MB        全文页数:19页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译---如何为大型的步行机器人在供能不足的情况下选择合适的速度轨道

    1、PDF外文:http:/ -  2020 单词  中文 3500 字  出处 : Germann D, Mller J, Hiller M. Speed-Adapted Trajectories In The Case Of Insufficient Hydraulic Pressure For The Four-Legged Large-Scale Walking Vehicle ALDUROJ. 2000.  附  录  A  Fifth Motion and Vibration Conference, MOVIC 20

    2、00, Sydney, Australia, 4. - 8. December 2000 by University of Technology, Sydney  SPEED-ADAPTED TRAJECTORIES IN THE CASE OF INSUFFICIENT YDRAULIC RESSURE FOR THE FOUR-LEGGED LARGE-SCALE WALKING VEHICLE ALDURO Daniel Germann, Jorg Muller and Manfred Hiller Gerhard-Mercator-Universitat GH Duisbur

    3、g Fachgebiet Mechatronik, Lotharstrae 1, 47057 Duisburg, Germany Email: fgermann, mueller, hillergmechatronik.uni-duisburg.de  ABSTRACT When operating walking machines, only a coordinated movement of all cylinders and/or motors can lead to safe, stable walking. The large hydraulically driven wa

    4、lking machine ALDURO, which is investigated in this paper, has no external power supply, and therefore the size of the on-board hydraulic power pack and its diesel engine is limited by its weight. When moving several cylinders with high speed, the hydraulic supply can become insufficient and the res

    5、ulting trajectories of feet and platform can become unpredictable. When the ALDURO is near its stability limit such behaviour can lead to instability and toppling of the system. The proposed solution under discussion here is to observe the position errors and time derivatives for the cylinders and b

    6、ased on this reduce the speed when necessary. - -  1. INTRODUCTION The system investigated in this paper is the Anthropomorphically Legged and Wheeled Duisburg Robot (ALDURO). It consists of a platform of 2.0m by 2.2m with a cabin for the operator and four legs, each 1.8m long. The estimated we

    7、ight is 1200 kg. It can be used as a quadruped walking machine (Fig. 2), and by replacing the two hind feet with wheels, it can also be used as a combined legged and wheeled vehicle (Fig. 1). The latter combines the advantages of a walking machine - high mobility - with the stability and speed of wh

    8、eeled vehicles 2. When operating in steep and dangerous terrain, safety plays an important role. It must be guaranteed that the cylinders follow the calc ulated trajectories exactly since a wrong movement might cause the robot to become instable. ALDURO's legs are hydraulically driven, with an o

    9、pen hydraulic system. Normally, when planning hydraulic systems, low weight has no high priority 1. For the walking machine ALDURO the ratio power per weight was optimized.  Fig. 1: Combined Legged             Fig. 2: Walking Machine and Wheeled Vehicle While actua

    10、ting several cylinders simultaneously or moving very fast, the volume flow of the hydraulic supply becomes insufficient and the resulting movements uncontrollable.The proposed solution under discussion here is a decrease in speed of all calculated trajectories. This is admissible as long as the robo

    11、t is statically stable at any moment. By observing the position errors of the cylinders and their time derivatives, a decision is taken on whether to decrease or increase the speed along the trajectories. To ensure that all movements are influenced simultaneously, the model-time, upon which all calc

    12、ulations depend, is slowed down. Thus we can guarantee that legs and platform can and do follow the prescribed trajectories. This strategy is being tested on a virtual model of the ALDURO and is being tested on a virtual model of the ALDURO and a test stand in the laboratory,consisting of a single l

    13、eg in scale 1:1, giving very good results. - -   Fig. 3: Experimental setup 2. EXPERIMENTAL SETUP The leg of the ALDURO is anthropomorphic, i.e. it is based on the geometry and function of the human leg. The hip joint is a spherical ball joint with three degrees of freedom (d.o.f.) and the knee

    14、 a revolute joint with one d.o.f. These joints are actuated with hydraulic cylinders (Fig. 4), whereas the two additional d.o.f. of the foot are passive. To make solution of the explicit inverse kinematics possible we lock one of the hip cylinders. The explicit solution of the direct and inverse kin

    15、ematics is shown in detail in 4.  To examine the dynamic behaviour of the leg, and to test different control schemes, an experimental setup for a fully sized leg was developed and built (see Fig. 3). It includes all the hydraulic components that will be used on the first prototype ALDURO and is

    16、 driven by a stationary hydraulic power pack in the laboratory. The experimental set-up is equipped with an open hydraulic system with a 15kW electrical motor and an axial piston pump producing a volume flow of 40 l/min at 200 bar. This is smaller than what will be used on the real system, which wil

    17、l be powerd by a 27kW diesel engine. For tests with an insufficient hydraulic flow, a second set of four hydraulic cylinders (as used to move one leg) is mounted on the floor next to the test stand. An optical fieldbus for the transfer of the sensor and actuator data between the test stand and the c

    18、ontrol computer (with real-time operating system) is also installed. The hydraulic cylinders include position and pressure sensors that are used as controller inputs. Thus dynamic tests can be carried out to examine the co-operation between the mechanical and hydraulic components and the electronic

    19、control system. The hip plate of the experimental set-up is mounted on a pair of linear bearings, and thus is mobile in vertical direction. When combined with the foot, as shown in Fig. 3, or the passive wheel used on the hind leg of the combined legged and wheeled system, this allows loading tests on the leg while performing walking motions. Mechanical stops below the hip plate allow the foot to be lifted in the swing phase of the walking motion. The first (unloaded) tests have shown the mobility of the anthropomorphic leg mechanism to be very good, and the optical fieldbus


    注意事项

    本文(外文翻译---如何为大型的步行机器人在供能不足的情况下选择合适的速度轨道)为本站会员(译***)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583