1、中文 10500 字 出处: Proceedings of the IEEE, 2007, 95(4): 806-820 电动 汽车的电池和超级电容 By ANDREW F.BURKE 仿真结果表明,省油的混合动力电动汽车可以设计成使用电池或者超级电容,而这是由两者之间的技术成本和使用年限决定的。 摘要 电池和超级电容器在纯电动汽车、充电保持型混合动力汽车和插电式混合动力汽车上的电能存贮单元中应用已经被详细地进行了研究。对于混合动力汽车而言,内燃机和氢燃料电池的使用时作为初级的替代能源来考虑的。研究重点是锂电池和碳 /双
2、层碳超级电容器作为能量存贮技术非常可能应用在未来汽车上。这项研究的主要结果如下: 1)电池和超级电容器的能量密度和功率密度特点对设计纯电动汽车、充电保持型混合动力汽车和插电式混合动力汽车有着足够的吸引力。 2)持续充电,混合动力汽车引擎动力可以被设计成使用电池或者超级电容器从而使燃油经济性改善 50%甚至更好。 3)插电式混合动力汽车可以设计成相对较小的锂电池使有效行程在 30-60 公里的范围内。对较长的日常驾驶范围( 80-150 公里)插电式混合动力汽车燃油经济消耗率可以非常高(大于 100mpg),因为绝 大部分能量(大于 75%)通过电流用于驱动汽车。 4)轻度混合动力汽车可以设计使
3、用一个储能容量 75-150Wh 的超级电容器。使用超级电容器时的燃油经济性提升要比使用同质量的电池组高 10%-15%,这是因为超级电容器的高效率和更高效率的引擎运转。 5)用氢燃料电池供能的混合动力汽车可以使用电池组或者超级电容器作为储能器。仿真结果表明,在同等车重和道路负载情况下,燃料电池汽车的等效燃油经济性是汽油机汽车燃油经济性的 2-3 倍。相比一辆引擎驱动的混合动力汽车,氢燃料电池的等效燃油经济性会是它的 1.66-2 倍。 关键词 : 电池组 控制策略 燃料电池 混合动力汽车 改善燃油经济性 超
4、级电容器 I.引言 为了提高传动系统效率,提供比其他道路交通方式更加节省石油能量,世界各地的汽车公司正在开发混合动力和燃料电池引擎。这些车辆的动力传动系统利用电动机和电能储存器补充引擎输出或者车辆在加速和巡航时燃料电池的补充以及制动时的能量回收。目前正在利用的能量存储技术是充电电池和超级电容器(电化学电容器)。能量储存单元可以从发动机、燃料电池或者电网充电,非常像一辆电动汽车。在后来的例子 (通常称为插电式混合动力汽车 ),车辆可以同时使用液体或者 气体燃料和电力网。插电式混合动力汽车的一个有吸引力的功能就是允许使用除了石油外的其他能源产生的电能。 本文主
5、要是关于供电电池,插电式混合动力汽车使用的引擎,燃料电池汽车使用的氢燃料的设计及其性能。特别令人感兴趣的是如何将储存的电能单元能最好的利用在一些动力系统中(组建的配置和控制策略),提高传动系统的效率,各种驾驶循环和车辆使用模式下的能量使用(燃料和电力电网)。通过不同设计方案的详细模拟结果进行评价,当可以利用时,记录下车辆测试数据。应用在汽车仿真中能量存储和燃料电池组件的特点对应于现在的这些技术以及预测 其性能在未来的改善。 II.电动和混合动力汽车的电池和超级电容器 A.不同汽车设计的储能要求 电能储存单元必须具有较大的容量,使他们储存足够的能量(千瓦时)
6、,并提供足够的车辆峰值功率使车辆有一定的加速性能和满足适当的驾驶循环的能力。对于这些用于重大的全电动范围的汽车设计,储能单元必须储存足够的电能满足在现实世界驾驶的范围要求。此外,能量储存单元必须符合适当的周期和寿命要求。这些需求将会有很大的差异性,这主要取决于被设计的车辆传动系(电池或燃料电池或混合动力发动机),但是一旦车辆的性能目标被确定,它们自然也 被简单合理的决定了。建立能量存储单元所需的重量,体积和成本并非直截了当,而是非常困难的。有了这些特点限制,显然将排除汽车的成功设计和销售,但是设置实际的限度去获得可行的设计是相当随意的。本文采用的方法是注意与各种技术的性能特点(瓦时 /千克,瓦
7、时 /升,瓦 /千克,等等)所对应的合适的储能单元质量和体积。在本文中不考虑成本问题。 如上所述,能量存储单元的大小决定于一个能量储存或者功率需求。就电动汽车供能的电池而言,电池容量的大小取决于车辆指定的范围。电池的质量和体积可以从车辆能量消耗的需求(瓦时 /千米)以及电池能 量密度(瓦时 /千克,瓦时 /升)通过适当的放电测试周期(对应的时间)来简单的计算得到。在大多数电动汽车的例子中,电池的规模很容易满足车辆的一个指定的加速性能,爬坡能力的功率要求和最高巡航速度。在此应用的电池都是利用的电网电力定期深放电和充电。因此,深放电循环寿命是一个主要的考虑因素,电池符合一个指定的最低要
8、求是非常有必要的。 就使用引擎或者燃料电池作为初级能量转化器和电池作为储备能源的混合动力汽车,能量储存单元的大小主要由车辆在加速时单位峰值功率大小决定的。在大多数混合动力汽车,电池的能量存贮被考虑做得比需求 更大以满足车辆适当的驾驶循环。可是,多余的能量储备只允许电池运行超过一段相对狭隘的范围(通常最多 5%-10%),还极大的延伸电池的循环寿命。原则上,决定混合动力汽车电池质量体积只有电池的脉动功率密度(瓦 /千克,瓦 /升)。然而,对于一个特定的电池技术,它并不如确定适当的功率密度值那么简单,因为应该考虑做出这个决定的效率。一个适当的脉冲功率值并不是 20 /4VR,因为那时的
9、效率非常低(接近 50%)。一个更加合适的电池峰值功率计算公式如下表达式 : 20* ( 1 ) * /p e a kP E F E F V R EF 是峰值功率脉冲效率。 在这个等式中,假设脉冲接近于 0V ,其中0/pulseEF V V。对于一个 90%的效率,高效率的电池脉冲功率大约为 20 /4VR数值的 1/3 。由于将讨论该文的下一部分,甚至使用上面的表达式,应用在混合动力汽车中的先进电池设计拥有高功率的能力,使得它们与充电式混合动力汽车相配合使用。 超级电容器也可以用于插电式混合动力汽车
10、。在这种情况下,能量存储单元大小决定于能量存储(瓦时)需求,因为超级电容器的能量密度(瓦 /千克)相对更低( 5-10 瓦 /千克)而有用功率密度很高( 1-2 千瓦 /千克)。从超级电容器的可用功率可使用下面的表达式 估计: 209 / 1 6 * ( 1 ) * /p e a kP E F V R EF 是峰值功率脉冲效率。 在这个等式中,假设脉冲峰值功率发生在 03/4V 时,效率为 01 / 3 / 4IR V ,其中0/ 3 / 4peakI P V。能量存储的需求规范对于设计和使用超级电容器的动力总成的实用性是至关重要的。正如在本文后面的讨论,功的需求完全取决于混合动