欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    建筑专业外文翻译---用智能数据分析检测建筑物中的能源异常消耗

    • 资源ID:133566       资源大小:1.14MB        全文页数:16页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    建筑专业外文翻译---用智能数据分析检测建筑物中的能源异常消耗

    1、PDF外文:http:/ 5120 字    EnergyandBuildings39(2007)5258     Usingintelligentdataanalysistodetectabnormalenergyconsumptioninbuildings  JohnE.Seem*  JohnsonControls,Inc.,507EastMichiganStreet,Milwaukee,WI53202,USA Received31October2005;receivedinrevisedform11March2006;accep

    2、ted18March2006    Abstract  Thispaperdescribesanovelmethodfordetectingabnormalenergyconsumptioninbuildingsbasedondailyreadingsofenergyconsumptionandpeakenergyconsumption.Themethodusesoutlierdetectiontodetermineiftheenergyconsumptionforaparticulardayissignificantlydifferentthanprevious

    3、energyconsumption.Forbuildingswithabnormalenergyconsumption,theamountofvariationfromnormalisdeterminedusingrobustestimatesofthemeanandstandarddeviation.Thisnewdataanalysismethodwillreduceoperatingcostsbydetectingproblemsthatpreviouslywouldhavegoneunnoticed.Also,operatorsshouldsavetimebynothavingtoma

    4、nuallydetectfaultsordiagnosefalsealarms.Thenewdataanalysismethodhassuccessfullydetectedhigh-energyconsumptioninmanybuildings.Thispaperpresentsfieldtestresultsforbuildingsthathadthefollowingproblems:(1)chillerfailureandapoorcontrolstrategy,(2)poordesignofventilatingandair-conditioningequipment,and(3)

    5、improperoperationofequipmentfollowingachangeintheelectricalpanel. #2006ElsevierB.V.Allrightsreserved.  Keywords:Energyconsumption;Faultdetection;Outlieranalysis;Performancemonitoring;Robuststatistics    1. Introduction  Energymanagementandcontrolsystemscancollectandstoremassivequ

    6、antitiesofenergyconsumptiondata.Facilityoperatorscanbeoverwhelmedwiththequantityofdata.Formanyoperators,itisnotpossibletodetectequipment,design,oroperationproblemsbecauseofdataoverload.Modernbuildingmanagementsystemshavetwosystemstohelptheoperatorswiththisdataoverload:alarmandwarningsystemsanddatavi

    7、sualizationprograms.Today,operatorsmustselectthethresholds foralarmsandwarnings.Thisis adifficulttask.Ifthethresholdsaretootight,thenanumberoffalsealarmsareissued,andifthethresholdsaretooloose,thenequipmentorsystemfailurescangoundetected.Thedatavisualizationprogramscanhelpbuildingoperatorsdetectandd

    8、iagnoseproblems,butalargeamountoftimecanbespentdetectingproblems.Also,theexpertiseofbuildingoperatorsvariesgreatly.Neworinexperiencedoperatorsmayhavedifficultydetectingfaultsandtheperformanceofanoperatorcanvarywiththetimeofdayordayoftheweek.    *Tel.:+14145244677;fax:+14145245810. E-mailad

    9、dress:.  0378-7788/$seefrontmatter#2006ElsevierB.V. Allrightsreserved.doi:10.1016/j.enbuild.2006.03.033 Theresearchcommunityhasdevelopedanumberofmethodsfordetectingfaultsinbuildingsandheating,ventilating,andair-conditioningsystems.TwomajorresearcheffortshavebeensponsoredbytheInternationalEnergy

    10、Agency:Annex251,2andAnnex343.Therearetwobasicapproachestofaultdetectionanddiagnosticsinbuildings:acomponentlevel(bottom-up)approachandawhole-building(top-down)approach.Thecomponentlevelapproachlooksforfaultsinindividualsystemssuchasvariable-air-volumeboxes,air-handlingunits,chillers,orboilers.Thewho

    11、le-buildingapproachlooksforunusualbehaviorinhigh-levelmeasure-mentssuchasthewhole-buildingcooling,heating,orelectricalconsumption. Claridgeetal.4describeanenergyconsumptionreportmethodthathelpsbuildingoperatorsandfacilitymanagersidentifyifthebuildingsystemsareworkingproperly.Thereportcontainsscatter

    12、plotsofdailychilledwaterenergyconsumptionversusaveragedailytemperatureanddailyhotwaterconsumptionversusaveragedailytemperaturefora3-monthperiod.Forthelastmonth,thescatterplotusesletters(M,T,W,H,F,S,U)toidentifythedaysoftheweek.Thelettershelpsbuildingoperatorsidentifyoutliersinenergyconsumptionforapa

    13、rticularday.Thereportalsocontainstwo-andthree-dimensionaltime seriesplotsofchilledwaterconsumptionand J.E.Seem/EnergyandBuildings39(2007)5258 53    Nomenclature  a2B a isan elementofset B a2=B aisnotanelementofsetB i indexusedinforloopinFig.1n numberofelementsinsetXnout numberofoutlie

    14、rsinsetX p righttailareaprobabilityfort-distribution Ri extremestudentizeddeviateforithextreme s standarddeviationforelementsinsetX srobust robustestimate  ofstandarddeviationfor  ele-mentsinsetX tn,pcriticalvalue(tn,p)fortheStudents t-distributionwithndegreesoffreedomandarighttailareaprob

    15、abilityofp xe,i valueofithextreme xj valueofjthobservationinsetX x average of elements in set X xrobust robustestimateofaverageofelementsinsetXX setofobservations thatcontainoutliersandnon- outliers Xnon-out  setofobservationsthatcontainnooutliers Xout setofobservationsthatcontainoutliers zm mo

    16、difiedz-score(standardscore) setofobservationsorelements j suchthat  Greekletters a probabilityofdeclaringanormalvalueanoutlier li criticalvalueforRosnersgeneralizedESDmany-outlierprocedure throughthetediousprocessofmanuallyinspectinggraphstodetectabnormalenergyconsumption.Instead,theoperatoror

    17、maintenanceoperatorcaninvestigateonlybuildingswithabnormalenergyconsumption.Themethodaccountsforweeklyvariationinenergyconsumptionbygroupingdaysoftheweekwithsimilarpowerconsumption.Arobustoutlierdetectionmethodisusedtodetermineiftheenergyconsumptionissignificantlydifferentthanpreviousenergyconsumpti

    18、on.Fortimeperiodswithabnormalenergyconsumption,theamountofdeviationfromnormalisdeterminedusingrobuststatistical methods.   2. Overviewofdataanalysismethod  Fig.1showsthemajorstepsrequiredtoidentifyabnormalenergyconsumptioninbuildings.Thefeatureextractionblockdeterminesfeaturessuchastheaver

    19、agedailyconsumptionorpeakdemandforadayfromenergydatasuchasthewhole-buildingelectricalconsumption.Thefeaturesarethensortedintogroupsbasedondaysoftheweekwithsimilarenergyconsumptionprofiles.(Inthispaper,thetermdaytypereferstodaysoftheweekwithsimilarconsumptionprofiles.)Afterthedataisgroupedbasedondayt

    20、ype,outlieridentificationisusedtodeterminethefeaturesthataresignificantlydifferentfromthefeaturesforthesamedaytype.Ifanyoutliersareidentified,thenamodifiedz-score9isusedtodeterminetheamountanddirectionofvariationfromanormalobservation.(z-Scoresarealsocalledstandardscores10.)Next,detailsonarobustoutl

    21、ieridentificationmethodandarobustmethodfordeterminingtheamountofvariationfromnormalarepresented.   whole-buildingelectricconsumption.Byinspectingtheseplots,buildingoperatorscanidentifydaysofabnormalenergyconsumption.HaberlandAbbas5,6reviewseveralnewgraphicaldisplaysforviewingbuildingenergydata.

    22、 DodierandKreider7presentamethodfordetectingwhole-buildingenergyproblemsforthefollowingenergyuses:whole-buildingtotalelectricenergy,whole-buildingtotalthermalenergy,HVAC-other-than-chillerelectricenergy,andchillerenergyusage.TheyusedanEnergyConsumptionIndex(ECI)todetermineiftheenergyconsumptionwashi

    23、gherthannormal,normal,orlowerthannormal.TheECIistheratioofactualenergyconsumptiontoexpectedenergyconsumptionasdeterminedfrom aneuralnetwork. Iftheratioislargerthananupperlimit(e.g.,1.125)thenthestateofthesystemishigherthannormal.Iftheratioislowerthanalowerlimit(e.g.,0.875),then the stateofthe system

    24、 is lowerthan normal. If the ratioisbetweenthelowerlimitandupperlimit,thenthestateofthesystemisnormal.GraphsoftheECIwillhelpbuildingoperatorsidentifymajorchangesinenergyconsumption.FigurespresentedbyDodierandKreider7showaweeklycycleofECI. Thispaperpresentsanintelligentdataanalysismethod8forautomatic

    25、allydetectingabnormalenergyconsumptioninbuildings.Withthismethod,operatorswillnothavetogo     Fig.1.Blockdiagramfordetectingabnormalenergyconsumption. 54 J.E.Seem/EnergyandBuildings39(2007)5258  Pn n i 1;p Pn 2 s   3. Outlieridentification:GESDmany-outlierprocedure  Anoutlie

    26、risanobservationthatappearstobeinconsistentwiththemajorityofobservations inadataset. For example,in Block1:Setnout= 0.Thisstepisusedtoinitializethenumberofoutlierstozero. Block2:Computeaverage(x)ofelementsinsetX.The averageisdeterminedfrom thedataset1,2, 1,0,3,2,101, 2,theobservation101 appearstobea

    27、noutlier.Datasetsmaycontainmorethanoneoutlier.Forexampleinthedataset1,2, 1,0,3,2,101, 2,  x  j1xj n  (1) 96,2,0, 209,theobservations101,96,and209appeartobeoutliers. BarnetandLewis11providedetailsonseveralcommonoutlieridentificationmethods.Aftercomparingseveralpopularoutlieridentificat

    28、ionmethods,IglewiczandHoaglin9highlyrecommendthegeneralizedextremestudentizeddeviate(ESD) wherexj isamemberofsetXandnequalsthenumberofelementsinsetX. Block3:Computestandarddeviation(s)ofelementsinsetX. Thestandarddeviationisdeterminedfrom s j1xj x many-outlier procedure that was proposed by Rosner 1

    29、2 s becauseitworkswellunderavarietyofconditions. n 1 (2) ThegeneralizedESDmany-outlierprocedurecanidentitytheelementsinasetthatareoutliers.Fig.2isaflowchartfordeterminingoneormoreoutliersfromasetofnobservationsX 2x1,x2,x3,.,xn.Theuserneedstospecifytheprobability,a,ofincorrectlydeclaringoneormoreoutl

    30、ierswhennooutliersexistandanupperbound,nu,onthenumberofpotentialoutliers.Careyetal.13saidtheupperbound(nu) Block4:s=0.Thisblockchecksifthestandarddeviationof theelementsinsetXiszero.Ifthestandarddeviationequalszero,thentheelementsinsetXallhavethesame valueandtherearenooutliersintheremainingelementsi

    31、nsetX.(Duringfield-testingofthismethod,severaldatasetshadastandarddeviationofzero.)TopreventadividebyzeroinBlock6,executiongoestoBlock10whenthestandard deviationdeterminedinBlock3equalszero. couldbedeterminedbyfindingthelargestintegerthatsatisfies thefollowinginequality:nu0.5(n 1).Followingaredetail

    32、s Block5:Findithextreme(xe,i )insetX.Theextremeelement, onthenumberedblocksinFig.2. xe,i,istheelementinsetXthatisfurthestfromx.Ofallthe elementsinsetX,theextremeelementxe,imaximizesthe functionjxj xjwherexi isanelementofsetX. Block6:ComputeithextremestudentizeddeviateRi.The extremestudentizeddeviate

    33、isdeterminedfrom  xe;i xj Rij  (3)  whereRiisanormalizedmeasureofhowfartheithextremeisfromtheaveragevalue(x)determinedinBlock2. Block7:Computeithcriticalvalueli.Rosner12developedthefollowingequationfordeterminingthecriticalvalue:   n itn i 1;p  liq (4) n i1n i 1t2  wher

    34、etn i 1,pistheStudentst-distributionwith(n i1)degreesandthetailareaprobabilitypisdeterminedfrom a p2n  i1 (5)               Fig.2.FlowchartforimplementingRosnersgeneralizedmany-outlierpro-cedure.  Abramowitzand Stegun 14reviewequations forestimatingtheStu

    35、dentst-distribution.   Block8:Ri>li.Thisblockdeterminesiftheithextremestudentizeddeviate,Ri,determinedinBlock6isgreaterthantheithcritical value,li,determinedinBlock7. Block9:Setnout=i.Thisblocksetsthenumberofoutliers, nout,equaltoi. Block10:Removeextremeelementxe,ifromsetX.Theextremeelementxe,iisremovedfromsetXandafterremovingtheextremeelementxe,i,thenumberofelementsinSetXisni.Ifiequalsnu,thenexecutiongoestoBlock11;otherwise,returntotheforlooponi.


    注意事项

    本文(建筑专业外文翻译---用智能数据分析检测建筑物中的能源异常消耗)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583