欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    电气专业外文翻译---抗雷击架空配电线路的可靠性

    • 资源ID:131722       资源大小:34.37KB        全文页数:7页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    电气专业外文翻译---抗雷击架空配电线路的可靠性

    1、 外文资料翻译 Reliability of Lightning Resistant Overhead Distribution Lines Lighting continues to be the major cause of outages on overhead power distribution lines. Through laboratory testing and field observations and measurements, the properties of a lightning stroke and its effects on electrical dist

    2、ribution system components are well-understood phenomena. This paper presents a compilation of 32 years of historical records for outage causes, duration, and locations for eight distribution feeders at the Oak Ridge National Laboratory (ORNL) . Distribution type lightning arresters are placed at de

    3、ad-end and angle structures at pole mounted wormer locations and at high points on the overhead line. Station class lightning arresters are used to protect underground cable runs, pad mounted switchgear and unit substation transformers. Resistance to earth of each pole ground is typically 15 ohms or

    4、 less. At higher elevations in the system, resistance to earth is substantially greater than 15 ohms, especially during the dry summer months. At these high points, ground rods were riven and bonded to the pole grounding systems in the 1960s in an attempt to decrease lightning outages. These attempt

    5、s were only partially successful in lowering the outage rate. From a surge protection standpoint the variety of pole structures used (in-line, corner, angle, deadend, etc.) and the variety of insulators and hardware used does not allow each 13.8 kV overhead line to be categorized with a uniform impu

    6、lse flashover rating (170 kV, etc.) or a numerical BIL voltage class (95 kV BIL; etc.). For simplicity purposes in the analysis, each overhead line was categorized with a nominal voltage construction class (15 kV, 34 kV, or 69 KV). Six of the eight overhead lines (feeders 1 through 6) were built wit

    7、h typical REA Standard horizontal wood crossarm construction utilizing single ANSI Class 55-5 porcelain pin insulators (nominal 15 kV insulation). The shield angle of the overhead ground wire to the phase conductors is typically 45 degrees. One overhead line (feeder 7) was built with transmission ty

    8、pe wood pole construction because the line extended to a research facility which was to have generated electrical power to feed back into the grid. Pole structure of this line are of durable wood cross a construction which utilize double ANSI 52-3 porcelain suspension insulators to support the condu

    9、ctors (nominal 34 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 7 is typically 30 degrees. In 1969, an overhead line (feeder 8) was intentionally built with lightning resistant construction in an attempt to reduce lightning caused outages. Pole struc

    10、tures of the line have phase over phase 24-inch long fiberglass suspension brackets with double ANSI 52-3 porcelain suspension insulators to support the conductors (nominal 69 kV insulation). The shield angle of the overhead ground wire to the phase conductors for feeder 8 is typically 30 degrees. T

    11、he failure data was compiled for each of the eight 13.8 kV feeders and is presented in Table, along with pertinent information regarding feeder construction, elevation, length, and age. A key finding of the failure analysis is that weather-related events account for over half (56%) of the feeder out

    12、ages recorded. Fifty-seven of the 76 weather-related outages were attributed to lightning. Insulation breakdown damage due to lightning is also suspected in at least a dozen of the equipment failures observed. The data indicates overhead lines which pass over high terrain are less reliable because o

    13、f the greater exposure to lightning. For example, feeder 3 had the most recorded outages (48), of which two-thirds were due to weather-related events; this feeder is also the highest line on the plant site, rising to an elevation of 450 above the reference valley elevation. Overhead lines that are l

    14、onger and to which more substations and equipment are attached were also observed to be less reliable (more exposure to lightning and more equipment to fail). The age of the line does not appear to significantly lessen its reliability as long as adequate maintenance is performed; none of the lines h

    15、ave had a notable increase in the frequency of outages as the lines have aged. As would be expected, the empirical data presented in Table I confirms the two overhead lines which have been insulated to a higher level (34 or 69 KV) have significantly better reliability records than those utilizing 15

    16、 kV class construction. Feeder 7 (insulated to 34 KV) and feeder 8 (insulated to 69 kV) have bad only 3 outages each over their 32 and 23 year life spans, respectively. These lines follow similar terrain and are comparable in length and age to the 15 kV class lines, yet they have a combined failure

    17、rate of 0.22 failures per year versus 4.32 failures per year for the remaining feeders. On typical 15 kV insulated line construction, lightning flashovers often cause 60 cycle power follow and feeder trip. With the higher insulation construction, outage rates are reduced by limiting the number of fl

    18、ashovers and the resultant power follow which causes an over current device to trip. This allows lightning arresters to perform their duty of dissipating lightning energy to earth. The number of re closer actions and their resultant momentary outages are also reduced. This is beneficial for critical

    19、 facilities and processes which cannot tolerate even momentary outages. An additional benefit is that outages due to animal contact are also reduced because of the greater distance from phase conductor to ground on pole structures. Distribution line equipment to increase line insulation values are o

    20、ff the shelf items and proven technology. New lightning resistant construction typical by utilizes horizontal line posts, fiberglass standoff brackets or any other method which world increase the insulation value. The replacement of standard pin insulators with line post insulators of greater flasho

    21、ver value is an effective means to retrofit existing wood cross arm construction. The doubling and tripling of dead end and suspension insulators is also a means of increasing flashover values on existing angle and dead-end structures. Current fiberglass, polymer, and epoxy technologies provide an affordable means to increase line insulation. While the use of increased insulation levels to reduce lightning flashovers and the resultant outages on overhead distribution lines has been thoroughly


    注意事项

    本文(电气专业外文翻译---抗雷击架空配电线路的可靠性)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583