1、The research of digital image processing technique 1 Introduction Interest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for aut
2、onomous machine perception. This chapter has several objectives: (1)to define the scope of the field that we call image processing; (2)to give a historical perspective of the origins of this field; (3)to give an idea of the state of the art in image processing by examining some of the principal area
3、 in which it is applied; (4)to discuss briefly the principal approaches used in digital image processing; (5)to give an overview of the components contained in a typical, general-purpose image processing system; and (6) to provide direction to the books and other literature where image processing wo
4、rk normally is reporter. 1.1 What Is Digital Image Processing? An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. Whe
5、n x, y, and digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elem
6、ents, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image. We consider these definitions in more formal terms in Chapter2. Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in
7、human perception. However, unlike human who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that human are not accustomed to associating with
8、image. These include ultrasound, electron microscopy, and computer-generated images. Thus, digital image processing encompasses a wide and varied field of application. There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis a
9、nd computer vision, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computin
10、g the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computer to emulate human vision, including learning and being able to make inferences a
11、nd take actions based on visual inputs. This area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. This field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The
12、 area of image analysis (also called image understanding) is in between image processing and computer vision. There are no clear-cut boundaries in the continuum from image processing at one end to computer vision at the other. However , one useful paradigm is to consider three types of computerized
13、processes is this continuum: low-, mid-, and high-ever processes. Low-level processes involve primitive operation such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its input and output are images. Mid-l
14、evel processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual object. Amid-level process is characterized by the fac
15、t that its inputs generally are images, but its output is attributes extracted from those images (e. g., edges contours, and the identity of individual object). Finally, higher-level processing involves “making sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of
16、 the continuum, performing the cognitive function normally associated with vision. Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this b
17、ook digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of auto
18、mated analysis of text. The processes of acquiring an image of the area containing the text. Preprocessing that images, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scop
19、e of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making cense.” As will become evident shortly, digital imag
20、e processing, as we have defined it, is used successfully in a broad rang of areas of exceptional social and economic value. The concepts developed in the following chapters are the foundation for the methods used in those application areas. 1.2 The Origins of Digital Image Processing One of the fir
21、st applications of digital images was in the newspaper industry, when pictures were first sent by submarine cable between London and NewYork. Introduction of the Bartlane cable picture transmission system in the early 1920s reduced the time required to transport a picture across the Atlantic from mo
22、re than a week to less than three hours. Specialized printing equipment coded pictures for cable transmission and then reconstructed them at the receiving end. Figure 1.1 was transmitted in this way and reproduced on a telegraph printer fitted with typefaces simulating a halftone pattern. Some of th
23、e initial problems in improving the visual quality of these early digital pictures were related to the selection of printing procedures and the distribution of intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward the end of 1921 in favor of a technique based on photogra
24、phic reproduction made from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an images obtained using this method. The improvements over Fig. 1.1 are evident, both in tonal quality and in resolution. FIGURE 1.1 A digital picture produced in FIGURE 1.2 A digital picture 1921 fro
25、m a coded tape by a telegraph printer made in 1922 from a tape punched With special type faces (McFarlane) after the signals had crossed the Atlantic twice. Some errors are Visible. (McFarlane) The early Bartlane systems were capable of coding images in five distinct level of gray. This capability w
26、as increased to 15 levels in 1929. Figure 1.3 is typical of the images that could be obtained using the 15-tone equipment. During this period, introduction of a system for developing a film plate via light beams that were modulated by the coded picture tape improved the reproduction process consider
27、ably. Although the examples just cited involve digital images, they are not considered digital image processing results in the context of our definition because computer were not involved in their creation. Thus, the history of digital processing is intimately tied to the development of the digital
28、computer. In fact digital images require so much storage and computational power that progress in the field of digital image processing has been dependent on the development of digital computers of supporting technologies that include data storage, display, and transmission. The idea of a computer goes back to the invention of the abacus in Asia Minor, more than 5000 years ago. More recently, there were developments in the past two centuries that are the foundation of what we call computer today. However, the basis