1、Numerical control technology and equipping development trend and countermeasure Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry an
2、d most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said the differences of different economic times, do not lie
3、 in what is produced, and lie in how to produce, produce with some means of labor . Manufacturing technology and equipping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the
4、 most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every indu
5、strially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country, not merely take the great measure to develop ones own numerical control technology and industry, and implement blockading and restric
6、tive policy to our country in view of high-grade, precision and advanced key technology of numerical control and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economi
7、c development in a more cost-effective manner, important way to improve the overall national strength and national position. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the
8、numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of field
9、s: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology; (5)Technology of the sensor; (6)Software engineering ,etc. Development trend of a numerical control technology The application of num
10、erical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology and enlargement of the application, the development
11、 of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the peoples livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Nu
12、merical control technology in the world at present and equipping the development trend to see, there is the following several respect 1- in its main research focus. 1 A high-speed, high finish machining technology and new trend equipped The efficiency, quality are subjavanufacturing technology. High
13、-speed, high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufac
14、turing technologies for this, learn (CIRP) to confirm it as the centre in the 21st century and study one of the directions in international production engineering. In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it
15、 is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut stre
16、ngth very small high, could process these muscles, walls. Adopt large-scale whole aluminium alloy method that blank pay empty make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, ma
17、ke the intensity , rigidity and dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility. According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is ev
18、en high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high
19、-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min
20、 only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g. In machining accuracy, the past 10 year
21、s, ordinary progression accuse of machining accuracy of lathe bring 5m up to from 10m already, accurate grades of machining center from 3 5m, rise to 1 1.5m, and ultraprecision machining accuracy is it enter nanometer grade to begin already (0.01m). In dependability, MTBF value of the foreign numeri
22、cal control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability . In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get
23、fast development, the application is expanded further . 1.2 Link and process and compound to process the fast development of the lathe in 5 axes Adopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with the best geometry form of the cutter , not only highly poli
24、shed, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the ha
25、rd steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical c
26、ontrol lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds. At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link gr
27、eatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including
28、5). At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt complex main shaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make 5 times process and 5 axles are processed and can be realized on the same lathe, can also realize the incl
29、ined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the DMUVoution series machining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly. 1.3 Bec
30、ome the main trend of systematic development of contemporary numerical control intelligently, openly, networkedly. The numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent
31、 in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , ada
32、ptive operation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; The
33、re are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc. Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of count
34、ries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numerical Control System) of China, etc. The numerical control system melts to