欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    土木专业毕业设计外文翻译---高层建筑

    • 资源ID:130460       资源大小:66.50KB        全文页数:17页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    土木专业毕业设计外文翻译---高层建筑

    1、 High-Rise Buildings Introduction It is difficult to define a high-rise building . One may say that a low-rise building ranges from 1 to 2 stories . A medium-rise building probably ranges between 3 or 4 stories up to 10 or 20 stories or more . Although the basic principles of vertical and horizontal

    2、 subsystem design remain the same for low- , medium- , or high-rise buildings , when a building gets high the vertical subsystems become a controlling problem for two reasons . Higher vertical loads will require larger columns , walls , and shafts . But , more significantly , the overturning moment

    3、and the shear deflections produced by lateral forces are much larger and must be carefully provided for . The vertical subsystems in a high-rise building transmit accumulated gravity load from story to story , thus requiring larger column or wall sections to support such loading . In addition these

    4、same vertical subsystems must transmit lateral loads , such as wind or seismic loads , to the foundations. However , in contrast to vertical load , lateral load effects on buildings are not linear and increase rapidly with increase in height . For example under wind load , the overturning moment at

    5、the base of buildings varies approximately as the square of a buildings may vary as the fourth power of buildings height , other things being equal. Earthquake produces an even more pronounced effect. When the structure for a low-or medium-rise building is designed for dead and live load , it is alm

    6、ost an inherent property that the columns , walls , and stair or elevator shafts can carry most of the horizontal forces . The problem is primarily one of shear resistance . Moderate addition bracing for rigid frames in“short”buildings can easily be provided by filling certain panels ( or even all p

    7、anels ) without increasing the sizes of the columns and girders otherwise required for vertical loads. Unfortunately , this is not is for high-rise buildings because the problem is primarily resistance to moment and deflection rather than shear alone . Special structural arrangements will often have

    8、 to be made and additional structural material is always required for the columns , girders , walls , and slabs in order to made a high-rise buildings sufficiently resistant to much higher lateral deformations . As previously mentioned , the quantity of structural material required per square foot o

    9、f floor of a high-rise buildings is in excess of that required for low-rise buildings . The vertical components carrying the gravity load , such as walls , columns , and shafts , will need to be strengthened over the full height of the buildings . But quantity of material required for resisting late

    10、ral forces is even more significant . With reinforced concrete , the quantity of material also increases as the number of stories increases . But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel , whereas for wind load the inc

    11、rease for lateral force resistance is not that much more since the weight of a concrete buildings helps to resist overturn . On the other hand , the problem of design for earthquake forces . Additional mass in the upper floors will give rise to a greater overall lateral force under the of seismic ef

    12、fects . In the case of either concrete or steel design , there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire in economy . 1. Increase the effective width of the moment-resisting subsyste

    13、ms . This is very useful because increasing the width will cut down the overturn force directly and will reduce deflection by the third power of the width increase , other things remaining cinstant . However , this does require that vertical components of the widened subsystem be suitably connected

    14、to actually gain this benefit. 2. Design subsystems such that the components are made to interact in the most efficient manner . For example , use truss systems with chords and diagonals efficiently stressed , place reinforcing for walls at critical locations , and optimize stiffness ratios for rigi

    15、d frames . 3. Increase the material in the most effective resisting components . For example , materials added in the lower floors to the flanges of columns and connecting girders will directly decrease the overall deflection and increase the moment resistance without contributing mass in the upper

    16、floors where the earthquake problem is aggravated . 4. Arrange to have the greater part of vertical loads be carried directly on the primary moment-resisting components . This will help stabilize the buildings against tensile overturning forces by precompressing the major overturn-resisting componen

    17、ts . 5. The local shear in each story can be best resisted by strategic placement if solid walls or the use of diagonal members in a vertical subsystem . Resisting these shears solely by vertical members in bending is usually less economical , since achieving sufficient bending resistance in the col

    18、umns and connecting girders will require more material and construction energy than using walls or diagonal members . 6. Sufficient horizontal diaphragm action should be provided floor . This will help to bring the various resisting elements to work together instead of separately . 7. Create mega-fr

    19、ames by joining large vertical and horizontal components such as two or more elevator shafts at multistory intervals with a heavy floor subsystems , or by use of very deep girder trusses . Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground .

    20、When the above principles are judiciously applied , structurally desirable schemes can be obtained by walls , cores , rigid frames, tubular construction , and other vertical subsystems to achieve horizontal strength and rigidity . Some of these applications will now be described in subsequent sectio

    21、ns in the following . The vertical subsystems in a high-rise building transmit accumulated gravity load from story to story , thus requiring larger column or wall sections to support such loading . In addition these same vertical subsystems must transmit lateral loads , such as wind or seismic loads

    22、 , to the foundations. However , in contrast to vertical load , lateral load effects on buildings are not linear and increase rapidly with increase in height . For example under wind load , the overturning moment at the base of buildings varies approximately as the square of a buildings may vary as

    23、the fourth power of buildings height , other things being equal. Earthquake produces an even more pronounced effect. When the structure for a low-or medium-rise building is designed for dead and live load , it is almost an inherent property that the columns , walls , and stair or elevator shafts can

    24、 carry most of the horizontal forces . The problem is primarily one of shear resistance . Moderate addition bracing for rigid frames in“short”buildings can easily be provided by filling certain panels ( or even all panels ) without increasing the sizes of the columns and girders otherwise required f

    25、or vertical loads. With reinforced concrete , the quantity of material also increases as the number of stories increases . But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel , whereas for wind load the increase for lateral f

    26、orce resistance is not that much more since the weight of a concrete buildings helps to resist overturn . On the other hand , the problem of design for earthquake forces . Additional mass in the upper floors will give rise to a greater overall lateral force under the of seismic effects . In the case

    27、 of either concrete or steel design , there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire in economy . Increase the effective width of the moment-resisting subsystems . This is very usef

    28、ul because increasing the width will cut down the overturn force directly and will reduce deflection by the third power of the width increase , other things remaining cinstant . However , this does require that vertical components of the widened subsystem be suitably connected to actually gain this

    29、benefit.Design subsystems such that the components are made to interact in the most efficient manner . Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground . When the above principles are judiciously applied , structurally desirable schemes can be obtained by walls , cores , rigid frames, tubular construction , and other vertical subsystems to achieve horizontal strength and rigidity . Some of these applications will now be described in subsequent sections in the following .


    注意事项

    本文(土木专业毕业设计外文翻译---高层建筑)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583