1、 1 附录一:外文资料原文 ELEMENTS OF CAM DESIGN How to plan and produce simple but efficient cams for petrol engines and other mechanisms Cams are among the most versatile mechanisms available A cam is a simple two-member device The input member is the cam itself, while the output member is called the follower
2、 Through the use of cams, a simple input motion can be modified into almost any conceivable output motion that is desired Some of the common applications of cams are Camshaft and distributor shaft of automotive engine Production machine tools Automatic record players Printing machines Automatic wash
3、ing machines Automatic dishwashers The contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematically However, the vast majority of cams operate at low speeds(less than 500 rpm) or medium-speed cams can be determined graphically using a large-scale layout In general,
4、the greater the cam speed and output load, the greater must be the precision with which the cam contour is machined Cams in some form or other are essential to the operation of many kinds of mechanical devices. Their best-known application is in the valve-operating gear of internal combustion engine
5、s, but they play an equally important part in industrial machinery, from printing presses to reaping machines. In general, a cam can be defined as a projection on the face of a disc or the surface of a cylinder for the purpose of producing intermittent reciprocating motion of a contacting member or
6、follower. Most cams operate by rotary motion, but this is not an essential condition and in special cases the motion may be semi-rotary, oscillatory or swinging. Even straight-line motion of the operating member is possible, though the term cam may not be considered properly applicable in such circu
7、mstances. Most text books on mechanics give some information on the design of cams and show examples of cam forms plotted to produce various orders of motion. Where neither the operating speed nor the mechanical duty is very high, there is a good deal of latitude in the nermissible design of the cam
8、 and it is only necessary to avoid excessively steep contours or abrupt changes which would result in noise, impact shock, and side pressure on the follower. But, with increase of either speed or load, much more exacting demands are made on the cam, calling for the most careful design and, at very h
9、igh speed, the effect of inertia on the moving parts is most pronounced, so that the further factors of acceleration and rate of lift have to be taken into account and these are rarely dealt with in any detail in the standard text books. 2 The design of the cam follower is also of great importance a
10、nd bears a definite relation to the shape of the cam itself. This is because the cam cannot make contact with the follower at a single fixed point. Surface contact is necessary to distribute load and avoid excess wear, thus the cam transmits its motion through various points of location on the follo
11、wer, depending on the shape of the two complementary members. The cams for operating i.c. engine valves present specially difficult problems in design. In the case of racing engines, both the load and speed may be regarded as extreme, because in many engines the rate at which the valves can be effec
12、tively controlled is the limiting factor in engine performance. In some respects, cam design of miniature engines is simplified by reason of their lighter working parts (and consequent less inertia) but on the other hand, working friction is usually greater and rotational speeds are generally consid
13、erably higher than in full-size practice. In the many designs for small four-stroke engines which I have published, I have sought to simplify valve operation and to provide designs for cams which can be simply and accurately produced with the facilities of the amateur workshop. Numerous engine desig
14、ns which have been submitted to me by readers have contained errors in the valve gear and particularly in the cams and in view of prevalent misconceptions in the fundamental principles of these items, I am giving some advice on the matter which I trust will help individual designers to obtain the be
15、st results from their engines. There have been many engines built with cams of thoroughly bad design but which, in spite of this, have produced results more or less satisfactory to their constructors. It may be said that within certain limits of speed one can get away with murder but in no case can
16、an engine perform efficiently with badly designed cams, or indeed errors in any of its working details. This article is concerned mainly with the design of cams for operating the valves of i.c. engines and, in order to avoid any confusion of terms, Fig. 1 shows the various parts of a cam of this typ
17、e and explains their functions. The circular, concentric portion of the cam, which has no operative effect, is known as the base circle: the humy of the cam (shown shaded) is known as the lobe, and the flanks on either side rise from the base circle to the nose, which is usually rounded.Lift may be
18、defined as the difference between the radius of the base circle and that of the nose. the anele enclosed between the points where the flanks join the base circle is termed the angular period, representing the proportion of the full cycle during which the cam operates the valve gear. In Fig. 2, typic
19、al examples of cams used in i.c. engines are illustrated. The tangent cam, A, has dead straight flanks-which as the name implies form tangents to the base circle. This type of cam is easy to design and produce, the simplest method of machining being by a circular milling process forming a concentric
20、 surface on the base circle and running straight out tangentially where the flanks start and finish. It can also be produced by filing and I have in the past described how to make it with the aid of a roller filing rest in the lathe, in conjunction with indexing gear to locate the flank angles. Tang
21、ent cams can only work efficiently in conjunction with a convex curved follower, as this is the only way in which the flank can be brought progressively and smoothly into action. Some time ago an engine was described having tangent cams in conjunction with flat followers. This was not intended for e
22、xtremely high speed and 3 very likely produced all the power required of it, but it is quite clear that the flat face of the tangent cam. On engaging the flat tappet-over the full length of the flank all at once, must produce an abrupt slapping action which is noisy, inefficient and destructive in t
23、he long run. Rollers are often used as followers with tangent cams and are satisfactory in respect of their shape, but the idea of introducing rolling motion at this point is not as good as it seems at first sight, because it merely transfers the sliding friction to a much smaller area-that of the p
24、ivot pin. It is possible in some cases, however, to use a ball or roller race for the follower and this, at any rate, has the merit of distributing and equalizing the wearing surface. Tangent cams have been used with a certain degree of success for high-performance-engines and were at one time popul
25、ar on racing motorcycle engines, though usually with some slight modification of shape-often “ designed ” by the tuner with the aid of .a Carborundum slip! Their more common application, however, has been on gas and oil engines running at relatively slow speeds, where they work well in contact with
26、rollers attached to the ends of the valve rockers. Cams with convex flanks are extensively used in motor cars and other mass-produced engines. One important advantage in this respect is that they are suited to manufacture in quantity by a copying process from accurately formed master cams. The fact
27、that hat-based tappets can be used also favours quantity production and they can be designed to work fairly silently. The contour of the flank can be plotted so that violent changes in the acceleration of the cam are avoided and, more important still, the tappet will follow the cam on the return mot
28、ion without any tendency to bounce or float at quite high speeds. In such cases, it may be necessary to introduce compound curves which are extremely difficult to copy on a small scale, but cams made with flanks formmg true circular arcs will give reasonably efficient results, and are very easily pr
29、oduced in any scale: Concave-flanked cams. Comparatively few examples of concave-flanked cams (Fig. 2c) are to be seen nowadays, though they have been used extensively in the past with the idea of obtaining the most rapid opening and closing of the valves. Theoretically, they can be designed to prod
30、uce consant-acceleration, but in practice they render valve control very difficult at high speed and their fierce angle of attack produces heavy side pressure on the tappet. The concave flank must always have a substantially greater radius than the follower, or a slapping action like that of a tange
31、nt cam on a flat follower is produced. The shape of the nose in most types of cams is dictated mainly by the need to decelerate the follower as smoothly as possible. It is one thing to design it in such a way that ideal conditions are obtained, and quite another to ensure in practice that the follow
32、er retains close contact with the cam. If the radius of the nose is too small, the follower will bounce and come down heavily on the return flank of the cam and,. if too great, valve opening efficiency will be reduced. Of the three types of cams, A, B and C, which all have identically equal lift and angular period, the lobe of B encloses the smallest area, and on first sight it might appear that it is the least efficient in producing adequate valve opening, or mean lift area, but owing to the use of a flat based tappet, its lift characteristics are not very