欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    数字图像处理外文翻译--- 数字图像处理

    • 资源ID:130405       资源大小:63.50KB        全文页数:10页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    数字图像处理外文翻译--- 数字图像处理

    1、 - 1 - Digital Image Processing 1 Introduction Many operators have been proposed for presenting a connected component n a digital image by a reduced amount of data or simplied shape. In general we have to state that the development, choice and modi_cation of such algorithms in practical applications

    2、 are domain and task dependent, and there is no best method. However, it is interesting to note that there are several equivalences between published methods and notions, and characterizing such equivalences or di_erences should be useful to categorize the broad diversity of published methods for sk

    3、eletonization. Discussing equivalences is a main intention of this report. 1.1 Categories of Methods One class of shape reduction operators is based on distance transforms. A distance skeleton is a subset of points of a given component such that every point of this subset represents the center of a

    4、maximal disc (labeled with the radius of this disc) contained in the given component. As an example in this _rst class of operators, this report discusses one method for calculating a distance skeleton using the d4 distance function which is appropriate to digitized pictures. A second class of opera

    5、tors produces median or center lines of the digital object in a non-iterative way. Normally such operators locate critical points _rst, and calculate a speci_ed path through the object by connecting these points. The third class of operators is characterized by iterative thinning. Historically, List

    6、ing 10 used already in 1862 the term linear skeleton for the result of a continuous deformation of the frontier of a connected subset of a Euclidean space without changing the connectivity of the original set, until only a set of lines and points remains. Many algorithms in image analysis are based

    7、on this general concept of thinning. The goal is a calculation of characteristic properties of digital objects which are not related to size or quantity. Methods should be independent from the position of a set in the plane or space, grid resolution (for digitizing this set) or the shape complexity

    8、of the given set. In the literature the term thinning is not used - 2 - in a unique interpretation besides that it always denotes a connectivity preserving reduction operation applied to digital images, involving iterations of transformations of speci_ed contour points into background points. A subs

    9、et Q _ I of object points is reduced by a de_ned set D in one iteration, and the result Q0 = Q n D becomes Q for the next iteration. Topology-preserving skeletonization is a special case of thinning resulting in a connected set of digital arcs or curves. A digital curve is a path p =p0; p1; p2; :; p

    10、n = q such that pi is a neighbor of pi 1, 1 _ i _ n, and p = q. A digital curve is called simple if each point pi has exactly two neighbors in this curve. A digital arc is a subset of a digital curve such that p 6= q. A point of a digital arc which has exactly one neighbor is called an end point of

    11、this arc. Within this third class of operators (thinning algorithms) we may classify with respect to algorithmic strategies: individual pixels are either removed in a sequential order or in parallel. For example, the often cited algorithm by Hilditch 5 is an iterative process of testing and deleting

    12、 contour pixels sequentially in standard raster scan order. Another sequential algorithm by Pavlidis 12 uses the de_nition of multiple points and proceeds by contour following. Examples of parallel algorithms in this third class are reduction operators which transform contour points into background

    13、points. Di_erences between these parallel algorithms are typically de_ned by tests implemented to ensure connectedness in a local neighborhood. The notion of a simple point is of basic importance for thinning and it will be shown in this report that di_erent de_nitions of simple points are actually

    14、equivalent. Several publications characterize properties of a set D of points (to be turned from object points to background points) to ensure that connectivity of object and background remain unchanged. The report discusses some of these properties in order to justify parallel thinning algorithms.

    15、1.2 Basics The used notation follows 17. A digital image I is a function de_ned on a discrete set C , which is called the carrier of the image. The elements of C are grid points or grid cells, and the elements (p; I(p) of an image are pixels (2D case) or voxels (3D case). The range of a (scalar) ima

    16、ge is f0; :Gmaxg with Gmax _ 1. The range of a binary image is f0; 1g. We only use binary images I in this report. Let hIi be the set of all pixel locations with value 1, i.e. hIi = I 1(1). The image carrier is de_ned on an orthogonal grid in 2D or 3D - 3 - space. There are two options: using the gr

    17、id cell model a 2D pixel location p is a closed square (2-cell) in the Euclidean plane and a 3D pixel location is a closed cube (3-cell) in the Euclidean space, where edges are of length 1 and parallel to the coordinate axes, and centers have integer coordinates. As a second option, using the grid p

    18、oint model a 2D or 3D pixel location is a grid point. Two pixel locations p and q in the grid cell model are called 0-adjacent i_ p 6= q and they share at least one vertex (which is a 0-cell). Note that this speci_es 8-adjacency in 2D or 26-adjacency in 3D if the grid point model is used. Two pixel

    19、locations p and q in the grid cell model are called 1- adjacent i_ p 6= q and they share at least one edge (which is a 1-cell). Note that this speci_es 4-adjacency in 2D or 18-adjacency in 3D if the grid point model is used. Finally, two 3D pixel locations p and q in the grid cell model are called 2

    20、-adjacent i_ p 6= q and they share at least one face (which is a 2-cell). Note that this speci_es 6-adjacency if the grid point model is used. Any of these adjacency relations A_, _ 2 f0; 1; 2; 4; 6; 18; 26g, is irreexive and symmetric on an image carrier C. The _-neighborhood N_(p) of a pixel locat

    21、ion p includes p and its _-adjacent pixel locations. Coordinates of 2D grid points are denoted by (i; j), with 1 _ i _ n and 1 _ j _ m; i; j are integers and n;m are the numbers of rows and columns of C. In 3Dwe use integer coordinates (i; j; k). Based on neighborhood relations we de_ne connectednes

    22、s as usual: two points p; q 2 C are _-connected with respect to M _ C and neighborhood relation N_ i_ there is a sequence of points p = p0; p1; p2; :; pn = q such that pi is an _-neighbor of pi 1, for 1 _ i _ n, and all points on this sequence are either in M or all in the complement of M. A subset

    23、M _ C of an image carrier is called _-connected i_ M is not empty and all points in M are pairwise _-connected with respect to set M. An _-component of a subset S of C is a maximal _-connected subset of S. The study of connectivity in digital images has been introduced in 15. It follows that any set

    24、 hIi consists of a number of _-components. In case of the grid cell model, a component is the union of closed squares (2D case) or closed cubes (3D case). The boundary of a 2-cell is the union of its four edges and the boundary of a 3-cell is the union of its six faces. For practical purposes it is easy to use neighborhood operations (called local operations) on a digital image I which de_ne a value at p 2 C in the transformed image based on pixel


    注意事项

    本文(数字图像处理外文翻译--- 数字图像处理)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583