1、大学毕业设计(论文) 公路线形设计 A.平面设计 道路的线形反映在平面图上是由一系列的直线和与直线相连的圆曲线构成的。现代设计时常在直线与圆曲线之间插入缓和曲线。 线形应是连续的,应避免平缓线形到小半径曲线的突变或者长直线末端与小半径曲线相连接的突然变化,否则会发生交通事故。同样,不同半径的圆弧首尾相接(复曲线)或在两半径不同的圆弧之间插入短直线都是不良的线形,除非在圆弧之间插入缓和曲线。长而平缓的曲线总是良好的线形,因为这种曲线线形优美,将来也不会废弃。然而,双向道路线形全由曲线构成也是不理想的,因为一些驾驶员通过曲线路段时总是犹豫。长而缓的曲线应用在拐角较小的地方。如果采用短曲线,则会出现
2、“扭结”。另外,线路的平,纵断面设计应综合考虑,而不应只顾其一,不顾其二,例 如,当平曲线的起点位于竖曲线的顶点附近时将会产生严重的交通事故。 行驶在曲线路段上的车辆受到离心力的作用,就需要一个大小相同方向相反的由超高和侧向摩擦提供的力抵消它,从公路设计的角度看,超高或横向摩擦力都不能超过某一最大值,这些控制值对于某一规定设计车速可能采用曲线的曲率作了限制。通常情况下,某一圆曲线的曲率是由其半径来体现的。而对于线形设计而言,曲率常常通过曲度来描述,即 100ft 长的曲线所对应的中心角,曲度与曲线的半径成反比。 公路的直线地段设置正常的路拱,而曲线地段则设置超高,在正常断面与超高断面之间 必须
3、设置过度渐变路段。通常的做法是维持道路每一条中线设计标高不变,通过抬高外侧边缘,降低内侧边缘以形成超高,对于直线与圆曲线直接相连的线形,超高应从未到达曲线之前的直线上开始,在曲线顶点另一端一定距离以外达到全部超高。 如果车辆以高速度行驶在一段受限制的路段,如直线与小半径的圆曲线相连,行车会极不舒服。汽车驶进曲线路段时,超高开始,车辆向内侧倾斜,但乘客须维持身体的垂直状态,因为此时未受到离心力的作用。当汽车到达曲线路段时,离心力突然产生,迫使乘客须作进一步的姿势调整。当汽车离开曲线时,上述过程刚好相反。插 入缓和曲线后,半径从无穷大逐渐过渡到圆曲线上的某一固定值,离心力逐渐增大,沿缓和曲线精心设
4、置超高,离心力平缓逐渐增加,避免了行车颠簸。 大学毕业设计(论文) 缓和曲线在铁路上已经使用多年,但在公路上最近才得以应用,这可以理解。火车必须遵循精确的运行轨道,只有采用缓和曲线后,上述那种不舒服的感觉才能消除。然而,汽车司机在公路上可以随意改变侧向位置,通过迂回进入圆曲线来为自己提供缓和曲线。但是在一个车道上(有时在其他车道上)做这种迂回行驶是非常危险的。设计合理的缓和曲线使得上述迂回没有必要。多丛安全为计,公路广泛采用缓和曲线。 对于 半径相同的圆曲线来说,在末端加上缓和曲线就会改变曲线和直线的相关位置,因此,应在最终定线勘测之前应决定是否采用缓和曲线。一般曲线的起点标为 PC 或 BC
5、,终点标为 PT 或 EC。对含有缓和曲线的曲线,通常的标记配置为: TC, SC, CS 和 ST。 对于双向道路,急弯处应增加路面宽度,这主要基于以下因素: 1.驾驶员害怕驶出路面边缘; 2.由于车辆前轮和后轮的行驶轨迹不同,车辆有效横向宽度加大; 3.车辆前方相对于公路中线倾斜而增加的宽度。对于宽度为 24ft的道路,增加的宽度很小,可以忽略。只有当设计车速为 30mil/h,且曲 度可达 2ft 然而,对于较窄的路面,即便是在较平缓的曲线路段上,加宽也是很重要的,推荐加宽值及加宽设计见公路线形设计。 B.纵坡线 公路的竖向线形及其对车连运行的安全性和经济性的影响构成了公路设计中最重要的
6、要素之一。竖向线形由直线和竖向抛物线或圆曲线组成,称为纵坡线。纵坡线从水平线逐渐上升时称为上坡,反之,则称为下坡。在分析坡度与坡度控制中,设计人员通常要研究中线纵断面上坡度变化的影响。 在确定坡度时,最理想的情况是挖方和填方平衡,没有大量的借方和弃方。所有的运土都尽可能下坡运并且距离不长,坡度应随地形而 变,并且与既有排水系统的升,降方向一致。在山区,坡度要使得挖填平衡以使总成本最低。在平原或草原地区,坡度与地表近似平行,但高于地表足够的高度,以利于路面排水,若有必要,可利用风力来清除表面积雪。如公路接近或沿河流走行,纵坡现的高度由预期洪水位来决定。无论在何种情况下,平缓的坡度现要比由短直线段
7、连接短竖曲线构成的不断变向的坡度线好得多。 由上坡向下坡变化的路段应设在挖方路段,而由下坡向上坡变化的路段应设在填方路段。这样的线形设计较好往往可以避免形成与现状地貌相反的土堆或是凹地。在挖填方平衡相比,在确定纵坡线时 ,其他考虑则重要得多。 城市项目往往比农村项目要求对控制要素进行更详尽的研究,对高程进大学毕业设计(论文) 行更细致的调整。一般来说,设计与现有条件相符的坡度较好,这样可避免一些不必要的花费。 在坡度的分析和控制中,坡度对机动车运行费用的影响是最重要的考虑因素之一。坡度增大,油耗显然增大,车速就要减慢。一个较为经济的方案则可使坡度减小而增加的年度成本与坡度不减而增加的车辆运行年
8、度成本之间相平衡。这个问题的准确解决方法取决于对交通流量和交通类型的了解,这只有通过交通调查方能获知。 在不同的州,最大纵坡也相差悬殊, AASHTO 建议由 时间车速和地形来选择最大纵坡。现行设计以设计车速为 70mil/h 时最大纵坡为 5%,设计车速30mil/h 时,根据地形不同,最大纵坡一般为 7%-12%。 当采用较长的持续爬坡时,在没有为慢行车辆提供爬坡道时,坡长不能够超过临界坡长。临界坡长可从 3%纵坡的 1700ft 变化至 8%纵坡的 500ft。 持续长坡的坡度必须小于公路任何一个端面的最大坡度,通常将长的持续单一纵坡断开,设计成低部为一陡坡,而接近坡顶则让坡度减小。同时
9、要避免由于纵断面倾斜而造成的视野受阻。 高速公路的最大纵坡为 9%,只有当路面排水成问题时 ,如水必须排至边沟或排水沟,最小坡度标准才显示起重要性。这种情况下, AASHTO 建议最小坡度为 0.35%。 C.视距 为保证行车安全,公路设计必须似的驾驶员视线前方有足够的一段距离,使他们能够避让以外的障碍物,或者安全地超车。视距就是车辆驾驶员前方可见的公路长度。安全视距具有两方面含义:“停车视距”或“不超车视距”或“超车视距”。 有时,大件物体也许会掉到路上,会对撞上去的车辆造成严重的危害。同样,轿车或卡车也可能会被一溜车辆阻在车道上。无论是哪种情况发生,合理设计要求驾驶员在一段距离以外就能看见这种险情,并在撞上去之前把车刹住。此外,认为车辆通过离开所行驶的车道就可以躲避危险的想法是不安全的。因为这会导致车辆失控或是与另一辆车想撞。 停车视距由两部分组成:第一部分是当驾驶员发现障碍物而作出制动之前驶出的一段距离,在这一察觉与反应阶段,车辆以其初始速度行驶;第二部分是驾驶员刹车后车辆所驶过的一段距离。第一部分停车视距取决于车速及驾驶员 的察觉时间和制动时间。第二部分停车视距取决于车速,刹车,轮