欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    PID控制器毕业设计外文翻译

    • 资源ID:129394       资源大小:75.19KB        全文页数:16页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    PID控制器毕业设计外文翻译

    1、 附录 一、英文原文 PID controller A proportionalintegralderivative controller (PID controller) is a generic control loopfeedback mechanism(controller) widely used in industrial control systems a PID is the most commonly used feedback controller. A PID controller calculates an error value as the difference b

    2、etween a measuredprocess variable and a desired setp oint. The controller attempts to minimize the error by adjusting the process control inputs. In the absence of knowledge of the underlying process, PID controllers are the best controllers.1 However, for best performance, the PID parameters used i

    3、n the calculation must be tuned according to the nature of the system while the design is generic, the parameters depend on the specific system. The PID controller calculation (algorithm) involves three separate parameters, and is accordingly sometimes calledthree-term control: the proportional, the

    4、 integral and derivative values, denoted P, I, and D. The proportionalvalue determines the reaction to the current error, the integral value determines the reaction based on the sum of recent errors, and the derivative value determines the reaction based on the rate at which the error has been chang

    5、ing. The weighted sum of these three actions is used to adjust the process via a control element such as the position of a control valve or the power supply of a heating element. Heuristically, these values can be interpreted in terms of time: P depends on the present error, I on the accumulation of

    6、 past errors, and D is a prediction offuture errors, based on current rate of change. By tuning the three constants in the PID controller algorithm, the controller can provide control action designed for specific process requirements. The response of the controller can be described in terms of the r

    7、esponsiveness of the controller to an error, the degree to which the controller overshoots the setpoint and the degree of system oscillation. Note that the use of the PID algorithm for control does not guarantee optimal control of the system or system stability. Some applications may require using o

    8、nly one or two modes to provide the appropriate system control. This is achieved by setting the gain of undesired control outputs to zero. A PID controller will be called a PI, PD, P or I controller in the absence of the respective control actions. PI controllers are fairly common, since derivative

    9、action is sensitive to measurement noise, whereas the absence of an integral value may prevent the system from reaching its target value due to the control action. Note: Due to the diversity of the field of control theory and application, many naming conventions for the relevant variables are in com

    10、mon use. Control loop basics A familiar example of a control loop is the action taken when adjusting hot and cold faucet valves to maintain the faucet water at the desired temperature. This typically involves the mixing of two process streams, the hot and cold water. The person touches the water to

    11、sense or measure its temperature. Based on this feedback they perform a control action to adjust the hot and cold water valves until the process temperature stabilizes at the desired value. Sensing water temperature is analogous to taking a measurement of the process value or process variable (PV).

    12、The desired temperature is called the setpoint (SP). The input to the process (the water valve position) is called the manipulated variable (MV). The difference between the temperature measurement and the setpoint is the error (e), that quantifies whether the water is too hot or too cold and by how

    13、much. After measuring the temperature (PV), and then calculating the error, the controller decides when to change the tap position (MV) and by how much. When the controller first turns the valve on, they may turn the hot valve only slightly if warm water is desired, or they may open the valve all th

    14、e way if very hot water is desired. This is an example of a simple proportional control. In the event that hot water does not arrive quickly, the controller may try to speed-up the process by opening up the hot water valve more-and-more as time goes by. This is an example of an integral control. By

    15、using only the proportional and integral control methods, it is possible that in some systems the water temperature may oscillate between hot and cold, because the controller is adjusting the valves too quickly and over-compensating or overshooting the set point. In the interest of achieving a gradu

    16、al convergence at the desired temperature (SP), the controller may wish to dampthe anticipated future oscillations. So in order to compensate for this effect, the controller may elect to temper their adjustments. This can be thought of as a derivative control method. Making a change that is too larg

    17、e when the error is small is equivalent to a high gain controller and will lead to overshoot. If the controller were to repeatedly make changes that were too large and repeatedly overshoot the target, the output would oscillate around the setpoint in either a constant, growing, or decaying sinusoid.

    18、 If the oscillations increase with time then the system is unstable, whereas if they decrease the system is stable. If the oscillations remain at a constant magnitude the system is marginally stable. A human would not do this because we are adaptive controllers, learning from the process history; ho

    19、wever, simple PID controllers do not have the ability to learn and must be set up correctly. Selecting the correct gains for effective control is known as tuning the controller. If a controller starts from a stable state at zero error (PV = SP), then further changes by the controller will be in resp

    20、onse to changes in other measured or unmeasured inputs to the process that impact on the process, and hence on the PV. Variables that impact on the process other than the MV are known as disturbances. Generally controllers are used to reject disturbances and/or implement setpoint changes. Changes in

    21、 feed water temperature constitute a disturbance to the faucet temperature control process. In theory, a controller can be used to control any process which has a measurable output (PV), a known ideal value for that output (SP) and an input to the process (MV) that will affect the relevant PV. Controllers are used in industry to regulate temperature, pressure, flow rate, chemical composition, speed and


    注意事项

    本文(PID控制器毕业设计外文翻译)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583