欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    数学专业外文翻译---插值与拟合

    • 资源ID:128624       资源大小:1.44MB        全文页数:44页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    数学专业外文翻译---插值与拟合

    1、PADE APPROXIMATION BY RATIONAL FUNCTION 129 We can apply this formula to get the polynomial approximation directly for a given function f (x), without having to resort to the Lagrange or Newton polynomial. Given a function, the degree of the approximate polynomial, and the left/right boundary points

    2、 of the interval, the above MATLAB routine cheby() uses this formula to make the Chebyshev polynomial approximation. The following example illustrates that this formula gives the same approximate polynomial function as could be obtained by applying the Newton polynomial with the Chebyshev nodes. Exa

    3、mple 3.1. Approximation by Chebyshev Polynomial. Consider the problem of finding the second-degree (N = 2) polynomial to approximate the function 2( ) 1 /(1 8 )f x x. We make the following program do_cheby.m, which uses the MATLAB routine cheby() for this job and uses Lagrange/Newton polynomial with

    4、 the Chebyshev nodes to do the same job. Readers can run this program to check if the results are the same. 3.4 PADE APPROXIMATION BY RATIONAL FUNCTION Pade approximation tries to approximate a function f (x) around a point xo by a rational function 00, 00 0 2 00 1 20 0 2 012()()()( ) ( ) ( )1 ( ) (

    5、 ) ( )MMNNMMNNQ x xp x xD x xq q x x q x x q x xd x x d x x x x d (3.4.1) where 0 0 ( 2 ) 0 ( ) 0( ) , ( ) , ( ) , , ( )MNf x f x f x f x are known. How do we find such a rational function? We write the Taylor series expansion of f (x) up to degree M + N at x = xo as 130 INTERPOLATION AND CURVE FITT

    6、ING ( 2 ) 0 ( ) 00 0 0 0 0 2 00 0 2 00 1 2( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 ( ) !( ) ( ) ( ) ( 3 . 4 . 2 )MNMNMNMNMNf x f xf x T x x f x f x x x x x x xMNa a x x a x x a x x Assuming 0x 0for simplicity, we get the coefficients of ( ) ( )NMD x a n d Q x such that ()( ) 0()MMNNQxTx Dx 0 1 1 0 11( )

    7、( 1 ) ( ) 01M N N NM N N NNNa a x a x d x d x q q x q xd x d x 0 1 1 0 1( ) ( 1 ) ( )M N N NM N N Na a x a x d x d x q q x q x (3.4.3) by solving the following equations: 001 0 1 12 1 1 0 2 21 1 2 21 1 1 2 12 1 1 2 212000M M M M N N MM M M M N NM M M M N NM N M N M N M Naqa a d qa a d a d qa a d a d

    8、 a d qa a d a d a da a d a d a da a d a d a d ( 3.4.4a)( 3.4.4b) Here, we must first solve Eq. (3.4.4b) for Nddd , 21 and then substitute dis into Eq. (3.4.4a) to obtain Mqqq , 10 The MATLAB routine padeap() implements this scheme to find the coefficient vectors of the numerator/denominator polynomi

    9、al )(/)( xDxQ NM of the Pade approximation for a given function f (x). Note the following things: The derivatives ( 2 ) ( )0 0 0( ) , ( ) , , ( )MNf x f x f x up to order (M + N) are computed numerically by using the routine difapx(), that will be introduced in Section 5.3. In order to compute the v

    10、alues of the Pade approximate function, we substitute 0xx for x in , ()MNpx which has been obtained with the assumption that 0x 0. PADE APPROXIMATION BY RATIONAL FUNCTION 131 Example 3.2. Pade Approximation for ()xf x e . Lets find the Pade approximation 3 , 2 3 2( ) ( ) / ( )p x Q x D x for ()xf x e around 0x 0. We make the MATLAB program do_pade.m, which uses the routine padeap() for this job and uses it again with no output argument to see the graphic results as


    注意事项

    本文(数学专业外文翻译---插值与拟合)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583