欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译---RTP-----------实时软件传输协议

    • 资源ID:128190       资源大小:38.18KB        全文页数:8页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译---RTP-----------实时软件传输协议

    1、附录 英文原文资料 RTP: A Transport Protocol for Real-Time Applications 1 Introduction This memorandum specifies the real-time transport protocol (RTP), which provides end-to-end delivery services for data with real-time characteristics, such as interactive audio and video. Those services include payload typ

    2、e identification, sequence numbering, times tamping and delivery monitoring. Applications typically run RTP on top of UDP to make use of its multiplexing and checksum services; both protocols contribute parts of the transport protocol functionality. However, RTP may be used with other suitable under

    3、lying network or transport protocols (see Section 10). RTP supports data transfer to multiple destinations using multicast distribution if provided by the underlying network. Note that RTP itself does not provide any mechanism to ensure timely delivery or provide other quality-of-service guarantees,

    4、 but relies on lower-layer services to do so. It does not guarantee delivery or prevent out-of-order delivery, nor does it assume that the underlying network is reliable and delivers packets in sequence. The sequence numbers included in RTP allow the receiver to reconstruct the senders packet sequen

    5、ce, but sequence numbers might also be used to determine the proper location of a packet, for example in video decoding, without necessarily decoding packets in sequence. While RTP is primarily designed to satisfy the needs of multi- participant multimedia conferences, it is not limited to that part

    6、icular application. Storage of continuous data, interactive distributed simulation, active badge, and control and measurement applications may also find RTP applicable. This document defines RTP, consisting of two closely-linked parts: 1.The real-time transport protocol (RTP), to carry data that has

    7、 real-time properties. 2. The RTP control protocol (RTCP), to monitor the quality of service and to convey information about the participants in an on-going session. The latter aspect of RTCP may be sufficient for loosely controlled sessions, i.e., where there is no explicit membership control and s

    8、et-up, but it is not necessarily intended to support all of an applications control communication requirements. This functionality may be fully or partially subsumed by a separate session control protocol, which is beyond the scope of this document. RTP represents a new style of protocol following t

    9、he principles of application level framing and integrated layer processing proposed by Clark and Tennenhouse 1. That is, RTP is intended to be malleable to provide the information required by a particular application and will often be integrated into the application processing rather than being impl

    10、emented as a separate layer. RTP is a protocol framework that is deliberately not complete. This document specifies those functions expected to be common across all the applications for which RTP would be appropriate. Unlike conventional protocols in which additional functions might be accommodated

    11、by making the protocol more general or by adding an option mechanism that would require parsing, RTP is intended to be tailored through modifications and/or additions to the headers as needed. Examples are given in Sections 5.3 and 6.3.3. Therefore, in addition to this document, a complete specifica

    12、tion of RTP for a particular application will require one or more companion documents (see Section 12): 1.A profile specification document, which defines a set of payload type codes and their mapping to payload formats (e.g., media encodings). A profile may also define extensions or modifications to

    13、 RTP that are specific to a particular class of applications. Typically an application will operate under only one profile. A profile for audio and video data may be found in the companion RFC TBD. 2.Payload format specification documents, which define how a particular payload, such as an audio or v

    14、ideo encoding, is to be carried in RTP. A discussion of real-time services and algorithms for their implementation as well as background discussion on some of the RTP design decisions can be found in 2. Several RTP applications, both experimental and commercial, have already been implemented from dr

    15、aft specifications. These applications include audio and video tools along with diagnostic tools such as traffic monitors. Users of these tools number in the thousands. However, the current Internet cannot yet support the full potential demand for real-time services. High-bandwidth services using RT

    16、P, such as video, can potentially seriously degrade the quality of service of other network services. Thus, implementors should take appropriate precautions to limit accidental bandwidth usage. Application documentation should clearly outline the limitations and possible operational impact of high-b

    17、andwidth real- time services on the Internet and other network services. 2 RTP Use Scenarios The following sections describe some aspects of the use of RTP. The examples were chosen to illustrate the basic operation of applications using RTP, not to limit what RTP may be used for. In these examples,

    18、 RTP is carried on top of IP and UDP, and follows the conventions established by the profile for audio and video specified in the companion Internet-Draft draft-ietf-avt-profile 2.1 Simple Multicast Audio Conference A working group of the IETF meets to discuss the latest protocol draft, using the IP

    19、 multicast services of the Internet for voice communications. Through some allocation mechanism the working group chair obtains a multicast group address and pair of ports. One port is used for audio data, and the other is used for control (RTCP) packets. This address and port information is distrib

    20、uted to the intended participants. If privacy is desired, the data and control packets may be encrypted as specified in Section 9.1, in which case an encryption key must also be generated and distributed. The exact details of these allocation and distribution mechanisms are beyond the scope of RTP.

    21、The audio conferencing application used by each conference participant sends audio data in small chunks of, say, 20 ms duration. Each chunk of audio data is preceded by an RTP header; RTP header and data are in turn contained in a UDP packet. The RTP header indicates what type of audio encoding (suc

    22、h as PCM, ADPCM or LPC) is contained in each packet so that senders can change the encoding during a conference, for example, to accommodate a new participant that is connected through a low-bandwidth link or react to indications of network congestion. The Internet, like other packet networks, occasionally loses and reorders packets and delays them by variable amounts of time. To cope with these impairments, the RTP header contains timing information and a sequence number that allow the receivers to reconstruct the timing produced by the source, so that in this example,


    注意事项

    本文(外文翻译---RTP-----------实时软件传输协议)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583