欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    弹性模型外文翻译

    • 资源ID:127502       资源大小:534.65KB        全文页数:24页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    弹性模型外文翻译

    1、附录 1 外文翻译原文 3.2 Elastic models 3.2.1 Anisotropy An isotropic material has the same properties in all directions we cannot dis-tinguish any one direction from any other. Samples taken out of the ground with any orientation would behave identically. However, we know that soils have been deposited in s

    2、ome way for example, sedimentary soils will know about the vertical direction of gravitational deposition. There may in addition be seasonal variations in the rate of deposition so that the soil contains more or less marked layers of slightly different grain size and/or plasticity. The scale of laye

    3、ring may be suffciently small that we do not wish to try to distinguish separate materials, but the layering together with the directional deposition may nevertheless be suffcient to modify the properies of the soil in different directions in other words to cause it to be anisotropic. We can write t

    4、he stiffness relationship between elastic strain increment e and stress increment compactly as eD )36.3( whereD is the stiffness matrix and hence 1D is the compliance matrix. For a completely general anisotropic elastic material utrokftsqnjerqpmidonmlhckjihgbfedcbaD 1)37.3( whereeachlettera,b,. is,i

    5、nprinciple,anindependentelasticpropertyandthe necessary symmetry of the sti?ness matrix for the elastic material has reduced the maximum number of independent properties to 21. As soon as there are material symmetries then the number of independent elastic properties falls (Crampin, 1981). For examp

    6、le, for monoclinic symmetry (z symmetry plane) the compliance matrix has the form: migdlkkjihfcgfebdcbaD00000000000000001)38.3( and has thirteen elastic constants. Orthorhombic symmetry (distinct x, y and z symmetry planes) gives nine constants: ihgfecedbcbaD0000000000000000000000001)39.3( whereas c

    7、ubic symmetry (identical x, y and z symmetry planes, together with planes joining opposite sides of a cube) gives only three constants: cccabbbabbbaD0000000000000000000000001)40.3( Figure 3.9: Independent modes of shearing for cross-anisotropic material If we add the further requirement that )(2 bac

    8、 and set Ea /1 and Evb / ,then we recover the isotropic elastic compliance matrix of (3.1). Though it is obviously convenient if geotechnical materials have certain fabric symmetries which confer a reduction in the number of independent elastic properties, it has to be expected that in general mater

    9、ials which have been pushed around by tectonic forces, by ice, or by man will not possess any of these symmetries and, insofar as they have a domain of elastic response, we should expect to require the full 21 independent elastic properties. If we choose to model such materials as isotropic elastic

    10、or anisotropic elastic with certain restricting symmetries then we have to recognise that these are modelling decisions of which the soil or rock may be unaware. However, many soils are deposited over areas of large lateral extent and symmetry of deposition is essentially vertical. All horizontal di

    11、rections look the same but horizontal sti?ness is expected to be di?erent from vertical stiffness. The form of the compliance matrix is now: feedcccabcbaD0000000000000000000000001)41.3( and we can write: :/)1(2)(2/1,/1,/,/,/1 hhhvhvvvhhhhh EvbafGeEdEvcEvbEa 和 1D hhhhvhvhvvhvvhvvhhhhhvvhhhhhEvGGEEvEv

    12、EvEEvEvEvE/12000000/1000000/1000000/1/000/1/000/1)42.3( This is described as transverse isotropy or cross anisotropy with hexagonal symmetry. There are 5 independent elastic properties: vE and hE are Youngs moduli for unconfined compression in the vertical and horizontal directions respectively; hvG

    13、 is the shear modulus for shearing in a vertical plane (Fig 3.9a).Poissons ratios hhV and hvV relate to the lateral strains that occur in the horizontal direction orthogonal to a horizontal direction of compression and a vertical direction of compression respectively (Fig 3.9c, b). Testing of cross anisotropic soils in a triaxial apparatus with their axes of anisotropy aligned with the axes of the apparatus does not give us any possibility to


    注意事项

    本文(弹性模型外文翻译)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583