欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译---通过建筑结构设计以改善建筑物的抗倒性

    • 资源ID:127337       资源大小:233.01KB        全文页数:17页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译---通过建筑结构设计以改善建筑物的抗倒性

    1、 外文原稿 2 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Design of Building Structures to Improve their Resistance to Progressive Collapse D A Nethercota a Department of Civil and Environmental Engineering, Imperial College London Abstract: It is rare nowadays for

    2、a new topic to emerge within the relatively mature field of Structural Engineering. Progressive collapse-or, more particularly, understanding the mechanics of the phenomenon and developing suitable ways to accommodate its consideration within our normal frameworks for structural design-can be so reg

    3、arded. Beginning with illustrations drawn from around the world over several decades and culminating in the highly public WTC collapses, those features essential for a representative treatment are identified and early design approaches are reviewed. More recent work is then reported, concentrating o

    4、n developments of the past seven years at Imperial College London, where a comprehensive approach capable of being implemented on a variety of levels and suitable for direct use by designers has been under development. Illustrative results are used to assist in identifying some of the key governing

    5、features, to show how quantitative comparisons between different arrangements may now be made and to illustrate the inappropriateness of some previous design concepts as a way of directly improving resistance to progressive collapse. 2011 Published by Elsevier Ltd. Keywords: Composite structures; Pr

    6、ogressive Collapse; Robustness; Steel structures; Structural design 1. Introduction Over time various different structural design philosophies have been proposed, their evolutionary nature reflecting: * Growing concern to ensure adequate performance. * Improved scientific knowledge of behaviour. * E

    7、nhanced ability to move from craft based to science based and thus from prescriptive to quantitatively justified approaches This can be traced through concepts such as: permissible stress, ultimate strength, limit states and performance based. As clients, users and the general public have become inc

    8、reasingly sophisticated and thus more demanding in their expectations, so it became necessary for designers to cover an ever increasing number and range of structural issuesmostly through consideration of the reaching this condition would be to a greater or lesser extent unacceptable approach. There

    9、fore issues not previously considered (or only allowed for in an implicit, essentially copying past satisfactory performance, way) started to require explicit attention in the form of: an assessment of demand, modelling behaviour and identification of suitable failure criteria. The treatment of topi

    10、cs such as fatigue, fire resistance, durability and serviceability can all be seen to have followed this pattern. To take a specific example: designing adequate fire resistance into steel framed buildings began (once the need had been recognised) with simple prescriptive rules for concrete encasemen

    11、t of vulnerable members but it has, in recent years, evolved into a sophisticated discipline of fire engineering, concerned with fire loading, the provision of protective systems such as sprinklers, calculation of response in the event of a fire and the ability to make quantitative comparisons betwe

    12、en alternative structural arrangements. Not only has this led to obvious economic benefits in the sense of not providing fire protection where it gave only negligible benefit, it has also led to increased fire safety through better understanding of the governing principles and the ability to act int

    13、elligently in designing suitable arrangements based on a proper assessment of need. Prior to the Ronan Point collapse in London in 1968 the terms robustness, progressive collapse, disproportionate collapse etc., were not part of Structural Engineering vocabulary. The consequences of the damage done

    14、to that 22 storey block of pre-cast concrete apartments by a very modest gas explosion on the 18th floor led to new provisions in the UK Building Regulations, outlawing for many years of so called system built schemes, demolition of several completed buildings, temporary removal of gas in high rise

    15、construction and the formation of the Standing Committee on Structural Safety. Eventually, the benefits of properly engineered pre-fabrication were recognised, safe methods for the installation of gas were devised and the industry moved on. However, the structural design guidance produced at that ti

    16、me - that still underpins much present day provision - was essentially prescriptive in nature with no real link to actual performance. Subsequent incidences of progressive collapse such as the Murragh Building and the World Trade Centre brought increased attention to the actual phenomenon and issues

    17、 of how it might reasonably be taken into account for those structural designs where it was considered appropriate. In doing this it is, of course, essential to include both the risk of a triggering incident and the consequences of a failure so that the resulting more onerous structural demands are

    18、used appropriately. Arguably, a disproportionate response in terms of requiring costly additional provisions in cases where the risks/consequences are very low/very minor may be as harmful as failing to address those cases where the risks/consequences are high/severe. This paper will review current

    19、approaches to design to resist progressive collapse and contrast these with work undertaken over the past seven years at Imperial College London, where the goal has been the provision of a realistically based method suitable for use in routine design. The essential features of the method will be presented, its use on several examples described and results presented to illustrate how it is leading to a better understanding of both the mechanics of progressive collapse and the ways in which structural engineers can best configure their structures so as to provide enhanced resistance


    注意事项

    本文(外文翻译---通过建筑结构设计以改善建筑物的抗倒性)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583