欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    紧空间外文文献翻译

    • 资源ID:127102       资源大小:3.41MB        全文页数:54页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    紧空间外文文献翻译

    1、 河南理工大学 本科毕业设计(论文) 外文文献资料翻译 院(系部) 数学与信息科学学院 专业名称 数学与应用数学专业 年级班级 0902 班 学生姓名 陈勇 学生学号 310911010214 2013 年 6 月 1 日 共 54 页 河南理工大学本科 毕业论文外文文献资料翻译 第 1 页 指导教师:赵勇 学生:陈勇 Compact Spaces The notion of component is not nearly so natural as that of connectedness.From the beginnings of topology,it was clear that

    2、the closed interval ba, of the real line had a certain proerty that was crucial for proving such thorrems as the maximum value theorem and the uniform continuity theorem .But for a long time,it was not clear how this property should be formulated for an arbitrary topological space.It used to be thou

    3、gh that the crucial property of ba, was the fact that every infinte subset of ba, has a limit point,and this property was the one dignified with the name of compactness.Later ,mathematicians realized that this formulation does not lie at the heart of the matter,but rather that a stronger formulation

    4、,in terms of open coverings of the space,is morecentral.The latter formulation is what we now call compactness.It is not as natural or intuitive as the former,some familiarity with it is needed before its usefulness becomes apparent. Definition. A collection of subsets of a space X is said to cover

    5、X ,or to be a covering of X ,if the union of the elements of is equal to X .It is called an open covering of X if its elements are open subsets of X . Definition. A space X is said to be compact if every open covering of X contains a finite subcollection that also covers X . EXAMPLE1. The real line

    6、R is not compact,for the covering of R by open intervals Znnn 2. contains no finite subcollection that covers R . EXAMPLE2. The following subspace of R is compact: ZnnX 10 . Given an open covering of X ,there is an element U of containing 0.The set U contains all but finitely many of the points n1 ;

    7、choose,for each points of X not in U ,an element of containing it.The collection consisting of these elements of ,along with the element U ,is a finite subcollection of that covers X . EXAMPLE3. Any space X containing only finitely many points is necessarily 共 54 页 河南理工大学本科 毕业论文外文文献资料翻译 第 2 页 指导教师:赵

    8、勇 学生:陈勇 compacts,because in this case every open covering of X is finite. EXAMPLE4 The interal 1,0 is not compact;the open covering Znn 1,1 contains no finite subcollection covering 1,0 .Nor is the interal 1,0 compact;the same argument applies.On the other hand,interal 1,0 is copact;you are probably

    9、 already familiar with this fact from analysis.In any case,we shall prove it shortly. In general,it takes some effort to decide whether a given space is compact or not.First we shall prove some general theorems that show us how to construct new compact spaces out of existing ones. Then in the next s

    10、ection we shall show certain specific spaces are compact.The spaces include all closed interals in the real line,and all closed and bounded subsets of nR Let us first prove some facts about subspaces.If Y is a subspace of X ,a collection of subsets of X is said to cover Y if the union of its element

    11、s contaons Y . Lemma 1. Let Y be a subspace of X .Then Y is compact if and only if every covering of Y by sets open in X contains a finite subcollection covering Y . Proof . Suppose that Y is compact and JA is a covering of Y by sets open in X .Then the collection JYA is a covering of Y by sets of Y

    12、 ;hence a finite subcollection YY,A 1 nA covers Y .Then ,1 nAA is a subcollection of that covers Y . Coversely,suppose the given condition holds:we wish to prove Y compact.Let A be a covering of Y by sets open in Y .For each ,choose a set A open In X such that YAA The collection A is a covering of Y by sets open in X .By


    注意事项

    本文(紧空间外文文献翻译)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583