欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译---可编程逻辑控制器

    • 资源ID:126266       资源大小:44.41KB        全文页数:7页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译---可编程逻辑控制器

    1、附录二外文文献及其翻译 Programmable logic controller Cynthia cooper From Wikipedia, the free encyclopedia A programmable logic controller or simply programmable controller is a digital computer used for automation of industrial processes, such as control of machinery on factory assembly lines. Unlike general-p

    2、urpose computers, the PLC is designed for multiple inputs and output arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact. Programs to control machine operation are typically stored in battery-backed or non-volatile memory. A PLC is an examp

    3、le of a real time system since output results must be produced in response to input conditions within a bounded time, otherwise unintended operation will result. Features Control panel with PLC (grey elements in the center). The unit consists of separate elements, from left to right; power supply, c

    4、ontroller, relay units for input and output. The main difference from other computers is that PLCs are armored for severe condition (dust, moisture, heat, cold, etc) and have the facility for extensive input/output (I/O) arrangements. These connect the PLC to sensors and actuators. PLCs read limit s

    5、witches, analog process variables (such as temperature and pressure), and the positions of complex positioning systems. Some even use machine vision. On the actuator side, PLCs operate electric motors, pneumatic or hydraulic cylinders, magnetic relays or solenoids, or analog outputs. The input/outpu

    6、t arrangements may be built into a simple PLC, or the PLC may have external I/O modules attached to a computer network that plugs into the PLC. PLCs were invented as replacements for automated systems that would use hundreds or thousands of relays, cam timers, and drum sequencers. Often, a single PL

    7、C can be programmed to replace thousands of relays. Programmable controllers were initially adopted by the automotive manufacturing industry, where software revision replaced the re-wiring of hard-wired control panels when production models changed. Many of the earliest PLCs expressed all decision m

    8、aking logic in simple ladder logic which appeared similar to electrical schematic diagrams. The electricians were quite able to trace out circuit problems with schematic diagrams using ladder logic. This program notation was chosen to reduce training demands for the existing technicians. Other early

    9、 PLCs used a form of instruction list programming, based on a stack-based logic solver. The functionality of the PLC has evolved over the years to include sequential relay control, motion control, process control, distributed control systems and networking. The data handling, storage, processing pow

    10、er and communication capabilities of some modern PLCs are approximately equivalent to desktop computers. PLC-like programming combined with remote I/O hardware, allow a general-purpose desktop computer to overlap some PLCs in certain applications. Under the IEC 61131-3 standard, PLCs can be programm

    11、ed using standards-based programming languages. A graphical programming notation called Sequential Function Charts is available on certain programmable controllers. PLC compared with other control systems PLCs are well-adapted to a range of automation tasks. These are typically industrial processes

    12、in manufacturing where the cost of developing and maintaining the automation system is high relative to the total cost of the automation.PLCs contain input and output devices compatible with industrial pilot devices and controls.PLC applications are typically highly customized systems so the cost of

    13、 a packaged PLC is low compared to the cost of a specific custom-built controller design. On the other hand, in the case of mass-produced goods, customized control systems are economic due to the lower cost of the components, which can be optimally chosen instead of a generic solution。 For high volu

    14、me or very simple fixed automation tasks, different techniques are used. For example, a consumer dishwasher would be controlled by an electromechanical cam timer costing only a few dollars in production quantities. A microcontroller-based design would be appropriate where hundreds or thousands of un

    15、its will be produced and so the development cost (design of power supplies and input/output hardware) can be spread over many sales, and where the end-user would not need to alter the control. Automotive applications are an example; millions of units are built each year, and very few end-users alter

    16、 the programming of these controllers. However, some specialty vehicles such as transit busses economically use PLCs instead of custom-designed controls, because the volumes are low and the development cost would be uneconomic. Very complex process control, such as used in the chemical industry, may

    17、 require algorithms and performance beyond the capability of even high-performance PLCs. Very high-speed or precision controls may also require customized solutions; for example, aircraft flight controls. PLCs may include logic for single-variable feedback analog control loop, a proportional, integr

    18、al, derivative or PID controller. A PID loop could be used to control the temperature of a manufacturing process, for example. Historically PLCs were usually configured with only a few analog control loops; where processes required hundreds or thousands of loops, a distributed control system (DCS) w

    19、ould instead be used. However, as PLCs have become more powerful, the boundary between DCS and PLC applications has become less clear-cut. Digital and analog signals Digital or discrete signals behave as binary switches, yielding simply an On or Off signal (1 or 0, True or False, respectively). Push

    20、 buttons, limit switches, and photoelectric sensors are examples of devices providing a discrete signal. Discrete signals are sent using either voltage or current, where a specific range is designated as On and another as Off. For example, a PLC might use 24 V DC I/O, with values above 22 VDC repres

    21、enting On, values below 2VDC representing Off, and intermediate values undefined. Initially, PLCs had only discrete I/O. Analog signals are like volume controls, with a range of values between zero and full-scale. These are typically interpreted as integer values (counts) by the PLC, with various ra

    22、nges of accuracy depending on the device and the number of bits available to store the data. As PLCs typically use 16-bit signed binary processors, the integer values are limited between -32,768 and +32,767. Pressure, temperature, flow, and weight are often represented by analog signals. Analog sign

    23、als can use voltage or current with a magnitude proportional to the value of the process signal. For example, an analog 4-20 mA or 0 - 10 V input would be converted into an integer value of 0 - 32767. Programming Early PLCs, up to the mid-1980s, were programmed using proprietary programming panels o

    24、r special-purpose programming terminals. they were designed to replace relay logic systems. These PLCs were programmed in ladder logic, which strongly resembles a schematic diagram of relay logic. Modern PLCs can be programmed in a variety of ways, from ladder logic to more traditional programming l

    25、anguages such as BASIC and C. Another method is State Logic, a Very High Level Programming Language designed to program PLCs based on State Transition Diagrams. Recently, the International standard IEC 61131-3 has become popular. IEC 61131-3 currently defines five programming languages for programma

    26、ble control systems: FBD (Function block diagram), LD (Ladder diagram), ST (Structured text, similar to the Pascal programming language), IL (Instruction list, similar to assembly language) and SFC (Sequential function chart). These techniques emphasize logical organization of operations. While the

    27、fundamental concepts of PLC programming are common to all manufacturers, differences in I/O addressing, memory organization and instruction sets mean that PLC programs are never perfectly interchangeable between different makers. Even within the same product line of a single manufacturer, different

    28、models may not be directly compatible. User interface PLCs may need to interact with people for the purpose of configuration, alarm reporting or everyday control. A Human-Machine Interface (HMI) is employed for this purpose. HMIs are also referred to as MMIs (Man Machine Interface) and GUI (Graphica

    29、l User Interface). A simple system may use buttons and lights to interact with the user. Text displays are available as well as graphical touch screens. Most modern PLCs can communicate over a network to some other system, such as a computer running a SCADA (Supervisory Control And Data Acquisition) system or web browser. Communications


    注意事项

    本文(外文翻译---可编程逻辑控制器)为本站会员(译***)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583