欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    桥梁设计外文翻译

    • 资源ID:126087       资源大小:231.69KB        全文页数:14页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    桥梁设计外文翻译

    1、外文文献翻译 7.2 Equilibrium Equations 7.2.1 Equilibrium Equation and Virtual Work Equation For any volume V of a material body having A as surface area, as shown in Figure 7.2, it has the following conditions of equilibrium: FIGURE 7.2 Derivation of equations of equilibrium. At surface points At internal

    2、 points Where ni represents the components of unit normal vector n of the surface;Ti is the stress vector at the point associated with n; ji,j represents the first derivative of ij with respect to xj; and Fi is the body force intensity.Any set of stresses ij,body forcesFi,and external surface forces

    3、 Ti that satisfies Eqs.(7.1a-c) is a statically admissible set. Equations(7.1b and c)may be written in(x,y,z) notation as and Where x, y,and z are the normal stress in(x,y,z) direction respectively; xy, yz,and so on,are the corresponding shear stresses in(x,y,z) notation;andFx,Fy,andFzard the body f

    4、orces in(x,y,z,)direction,respe- ctively. The principle of virtual work has proved a very powerful technique of solving problems and providing proofs for general theorems in solid mechanics. The equation of virtual work uses two independent sets of equilibrium and compatible(see Figure 7.3,where Au

    5、and AT represent displacement and stress boundary),as follows: compatible set equilibrium set or which states that the external virtual work( Wext) equals the internal virtual work( Wint). Here the integration is over the whole area A,orvoluneV,of the body. The stress field ij,body forces Fi,and ext

    6、ernal surface forces Tiare a statically admissible set that satisfies Eqs.(7.1a c).Similarly, the strain field ij and the displacement ui are a compatible kinematics set that satisfies displacement boundary conditions and Eq.(7.16)(see Section 7.3.1).This means the principle of virtual work applies

    7、only to small strain or small deformation. The important point to keep in mind is that, neither the admissible equilibrium set ij,Fi,andTi(Figure 7.3a)nor the compatible set ij and ui ( Figure 7.3b)need be the actual state,nor need the equilibrium and compatible sets be related to each other in any

    8、way.In the other words, these two sets are completely independent of each other. 7.2.2 Equilibrium Equation for Elements For an infinitesimal material element,equilibrium equations have been summarized in Section 7.2.1,which will transfer into specific expressions in different methods.As in ordinary

    9、 FEM or the displacement method, it will result in the following element equilibrium equations: FIGURE 7.4 Plane truss member end forces and displacements.(Source: Meyers, V.J.,Matrix Analysis of Structures,New York: Harper & Row,1983. With permission.) Where F e and d e are the element nodal force

    10、vector and displacement vector,respectively,whilek e is element stiffness matrix;theoverbar here means in local coordinate system. In the force method of structural analysis, which also adopts the idea of discretization,it is proved possible to identify a basic set of independent forces associated w

    11、ith each member, in that not only are these forces independent of one another, but also all other forces in that member are directly dependent on this set.Thus,this set of forces constitutes the minimum set that is capable of completely defining the stressed state of the member.The relationship between basic and local forces may be


    注意事项

    本文(桥梁设计外文翻译)为本站会员(译***)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583