1、附录一 霍 斯金斯 .乔赛 机械加工是所有制造过程中最普遍使用的而且是最重要的方法。机械加工过程是一个产生形状的过程 ,在这过程中 ,驱动装置使工件上的一些材料以切屑的形式被去除。尽管在某些场合 ,工件无承受情况下 ,使用移动式装备来实现加工 ,但大多数的机械加工是通过既支承工件又支承刀具的装备来完成。 机械加工在知道过程中具备两方面。小批生产低费用。对于铸造、锻造和压力加工 ,每一个要生产的具体工件形状 ,即使是一个零件 ,几乎都要花费高额的加工费用。靠焊接来产生的结构形状,在很大程度上取决于有效的原材料的形式。一般来说,通过利用贵重设备而又无需特种加工条件下,几乎可以以任何种类原材料开始,
2、借助机械加工把原材料加工成任意所需要的结构形状 ,只要外部尺寸足够大 ,那都是可能的。因此对于生产一个零件 ,甚至当零件结构及要生产的批量大小上按原来都适于用铸造、锻造或者压力加工来生产的 ,但通常宁可选择机械加工。 基本的机械加 工参数 切削中工件与刀具的基本关系是以以下四个要素来充分描述的 ,刀具的几 ,何形状 ,切削速度 ,进给速度和吃刀深度。 切削刀具必须用一种合适的材料来制造 ,它必须是强固、韧性好、坚硬而且耐磨的。刀具的几何形状 以刀尖平面和刀具角为特征 对于每一种切削工艺都必须是正确的。 切削速度是切削刃通过工件表面的速率,它是以每分钟英寸来表示。为了有效地加工 ,切削速度高低必
3、须适应特定的工件 刀具配合。一般来说 ,工件材料越硬 ,速度越低。 进给速度是刀具切进工件的速度。若工件或刀具作旋转运动,进给量是以每转转过的英寸 数目来度量的。当刀具或工件作往复运动时,进给量是以每一行程走过的英寸数度量的。一般来说 ,在其他条件相同时 ,进给量与切削速度成反比。 吃刀深度 以英寸计 是刀具进入工件的距离。它等于旋削中的切屑宽度或者等于线性切削中的切屑的厚度。粗加工比起精加工来,吃刀深度较深。 切削参数的改变对切削温度的影响 实质上由于在金属切削中所做的全部功能都被转化为热 ,那就可以预料 ,被切离金属的单位体积功率消耗曾家的这些因素就将使切削温度升高。这样刀具前角的增加而所
4、有其他参数不变时 ,将使切离金属的单位体积所耗功率减小 ,因而切削温度也将降低。当考虑到未变形切屑厚度增加和切削速度 ,这情形就更是复杂。未变形切屑厚度的增加趋势必导致通过工件的热的总数上产生比例效应 ,刀具和切屑仍保持着固定的比例 ,而切削温度变化倾向于降低。然而切削速度的增加 ,传导到工件上的热的数量减少而这又增加主变形区中的切屑温升。进而副变形区势必更小 ,这将在该区内产生升温效应。其他切削参数的变化 ,实质上对于被切离的单位体积消耗上并没有什么影响 ,因此实际上对切削温度没有什么作用。因为事实已经表明 ,切削温度即使有小小的变化对刀具磨损率都将有实质意义的影响作用。这表 明如何人从切削
5、参数来确定切削温度那是很合适的。 为着测定高速钢刀具温度的最直接和最精确的方法是 W&T 法 ,这方法也就是可提供高速钢刀具温度分布的详细信息的方法。该项技术是建立在高速钢刀具截面金相显微测试基础上 ,目的是要建立显微结构变化与热变化规律图线关系式。当要加工广泛的工件材料时 ,Trent 已经论述过测定高速钢刀具的切削温度及温度分布的方法。这项技术由于利用电子显微扫描技术已经进一步发展 ,目的是要研究将已回过火和各种马氏体结构的高速钢再回火引起的微观显微结构变化情况。这项技术亦用于研究高速钢单点车刀和麻花 钻的温度分布。 刀具磨损 从已经被处理过的无数脆裂和刃口裂纹的刀具中可知 ,刀具磨损基本
6、上有三种形式 :后刀面磨损 ,前刀面磨损和 V 型凹口磨损。后刀面磨损既发生在主刀刃上也发生副刀刃上。关于主刀刃 ,因其担负切除大部金属切屑任务 ,这就导致增加切削力和提高切削温度 ,如果听任而不加以检查处理 ,那可能导致刀具和工件发生振动且使有效切削的条件可能不再存在。关于副刀刃 ,那是决定着工件的尺寸和表面光洁度的 ,后刀面磨损可能造成尺寸不合格的产品而且表面光洁度也差。在大多数实际切削条件下 ,由于主前刀面先于副前刀面磨损 ,磨损到达 足够大时 ,刀具将实效 ,结果是制成不合格零件。 由于刀具表面上的应力分布不均匀 ,切屑和前刀面之间滑动接触区应力 ,在滑动接触区的起始处最大 ,而在接触
7、区的尾部为零 ,这样磨蚀性磨损在这个区域发生了。这是因为在切削卡住区附近比刀刃附近发生更严重的磨损 ,而刀刃附近因切屑与前刀面失去接触而磨损较轻。这结果离切削刃一定距离处的前刀面上形成麻点凹坑 ,这些通常被认为是前刀面的磨损。通常情况下 ,这磨损横断面是圆弧形的。在许多情况中和对于实际的切削状况而言 ,前刀面磨损比起后刀面磨损要轻,因此后刀面磨损更普遍地作为刀具失效的尺度标 志。然而因许多作者已经表示过的那样在增加切削速度情况下,前刀面上的温度比后刀面上的温度升得更快 ,而且又因任何形式的磨损率实质上是受到温度变化的重大影响。因此前刀面的磨损通常在高速切削时发生的。 如果任何进行性形式的磨损任
8、由继续发展 ,最终磨损速率明显地增加而刀具将会有摧毁性失效破坏 ,即刀具将不能再用作切削 ,造成工件报废 ,那算是好的 ,严重的可造成机床破坏。对于各种硬质合金刀具和对于各种类型的磨损 ,在发生严重失效前 ,就认为已达到刀具的使用寿命周期的终点。然而对于各种高速钢刀具 ,其磨损是属于非均匀性磨损 ,已经发现 :当其磨损允许连续甚至到严重失效开始 ,最有意义的是该刀具可以获得重磨使用 ,当然 ,在实际上 ,切削时间远比使用到失效的时间短。以下几种现象之一均是刀具严重失效开始的特征 ,最普遍的是切削力突然增加 ,在工件上出现烧损环纹和噪音严重增加等。 自动夹具设计 用做装配设备的传统同步夹具把零件
9、移动到夹具中心上 ,以确保零件从传送机上或从设备盘上取出后置于已定位置上。然而在某些应用场合、强制零件移动到中心线上时 ,可能引起零件或设备破坏。当零件易损而且小小振动可能导致报废时 ,或当其位置是由机床主轴或模具来具体时 ,再或者当公 差要求很精密时 ,那宁可让夹具去适应零件位置 ,而不是相反。为着这些工作任务美国俄亥俄州Elyria 的 Zaytran 公司已经开发了一般性功能数据的非同步西类柔顺性夹具。因为夹具作用力和同步化装置是各自独立的 ,该同步装置可以用精密的滑移装置来替换而不影响夹具作用力。夹具规格范围是从 0.2 英寸行程 ,5 英镑夹紧力到 6英寸行程、 400 英寸夹紧力。
10、 根据它们柔顺性 ,夹具可以分为 :专用夹具、组合夹具、标准夹具、高柔性夹具。柔性夹具是以它们对不同工件的高适应性和以少更换低费用为特征的。 结构形式可变换的柔性夹具装有可变 更结构排列的零件 (例如针形颊板 ,多片式零件和片状颊板 ),标准工件的非专用夹持或夹紧元件 (例如 :启动标准夹持夹具和有可移动元件的夹具配套件 ),或者装有陶瓷或硬化了的中介物质 (如 :流动粒子床夹具和热夹具紧夹具 )。为了生产 ,零件要在夹具中被紧固 ,需要产生夹紧作用 ,其有几个与夹具柔顺性无关的步骤 : 在充分准备了构造方案和一批材料情况下 ,在完成首次组装可以成功实现 节约时间达 60%。 因此夹具机构造型过程的目的是产生合适的编程文件。