1、 附录一:外文文献原文 Pumps outline The pump is the application very widespread general machinery, may say that is place of the fluid flow, nearly has the pump in the work. Moreover, along with sciences and technologys development, pumps application domain is expanding rapidly, according to the over-all state
2、 statistics, pumps power consumption approximately composes the national total output of electrical energy 1/5, obviously the pump is natural consumes energy the wealthy and powerful family. Therefore, raises the pump technical level to save the energy consumption to have the important meaning. Firs
3、t. Centrifugal pumps principle of work The drive leads impeller revolving through the pump spindle to have the centrifugal force, under the centrifugal action of force, the liquid is flung along the leaf blade flow channel to the impeller export, the liquid sends in after the volute collection the e
4、duction tube. The liquid obtains the energy from the impeller, causes the pressure energy and the speed can increase, and depends upon this energy the hydraulic transport to the operating location. while the liquid is flung which exports to the impeller, the impeller eye center has formed the low pr
5、essure, has had the differential pressure in the imbibition pot and between the impeller center liquid, in the imbibition pots liquid under this differential pressure function, after inhales the pipeline and pumps suction chamber unceasingly enters in the impeller. Second, centrifugal pumps structur
6、e and main spare part A centrifugal pump mainly by the pump body, the impeller, the packing ring, the rotation axis, the axis seals parts and so on box to be composed, some centrifugal pumps are also loaded with the guide pulley, the inducer, the balance disc and so on. 1. Pump body: Namely pumps sh
7、ell, including suction chamber and delivery chamber. Suction chamber: Its function is enables the liquid to flow in evenly the impeller. Delivery chamber: Its function collects the liquid, and sends in it the subordinate impeller or guides the eduction tube, at the same time reduces the liquid the s
8、peed, causes the kinetic energy to further turn the pressure energy. The delivery chamber has the volute and the guide vane two forms. 2. Impeller: It is in the centrifugal pump transmits the energy for the liquid only part, the impeller with the bond fixation on the axis, leads revolving along with
9、 the axis by the prime mover, passes to through the leaf blade prime movers energy the liquid. Impeller classification: According to liquid inflow classification: Single suction impeller (in impellers one side has an entrance) and double attracts the impeller (liquid from impellers lateral symmetry
10、liudao impeller passage). Is opposite according to the liquid in centerlines flow direction classification: Runoff type impeller, axial-flow propeller and interflow type impeller. According to impellers structural style classification: Shrouded impeller, open type impeller and semi-opened impeller.
11、3. Axis: Is transmits the mechanical energy the important components, the prime movers torque passes to the impeller through it. The pump spindle is the pump rotors major parts, on the axis is loaded with components and so on impeller, axle sleeve, balance disc. The pump spindle depending on the bot
12、h sides bearing supporting, makes the high speed rotation in the pump, thus the pump spindle in a big way wants the bearing capacity, to be wear-resisting, to be anti-corrosive. Pump spindles material selects the carbon steel or the alloy steel and after the quenching and retempering treatment gener
13、ally. 4. Packing ring: Is installs in the rotation impeller and the static pump housing (center-section and guide vanes assembly) between packing assembly. It is function is through controls between the two gap method, increases in the pump between the high and low pressure cavity the fluid flow res
14、istance, reduces divulging. 5. Axle sleeve: The axle sleeve is uses for to protect the pump spindle, causes it not to corrode and the attrition. When necessity, the axle sleeve may replace. 6. Axis seals: The pump spindle and around packing box between end covers installs short for axis to seal, mai
15、nly prevents in pumps liquid divulging and the air enters in the pump, achieves seals and prevents the air admission to cause the pump cavitation goal. the axis seals form: Namely has skeletons rubber seal, the packing seal and the mechanical seal. 7. axial force balancing unit. Third. Centrifugal p
16、umps prime task parameter 1. Current capacity: Namely the pump in unit of time discharges the liquid quantity, usually indicated with the Unit of volume that mark Q, the unit has m3/h, m3/s, l/s and so on, 2. Lifting: The transportation unit weights liquid (pump suction flange) (pump discharge flang
17、e) from the pump inlet place to the pump exit, its energys increment, indicated with H, the unit is m. 3. Rotational speed: Pumps rotational speed is the pump each minute revolving number of times, expressed with N. Electrical machinery rotational speed N generally about 2900 n/min. 4. Net positive
18、suction head: Centrifugal pumps net positive suction head is expressed that pumps performances main parameter, uses the symbolic representation. 5. Power and efficiency: Pumps power input is shaft power P, is also electric motors output. Pumps output is the active power. Fourth, pump proper energy l
19、oss Pump mechanical energy which obtains from the prime mover, has a part to transform into the liquid energy, but another part because in the pump consumes loses. In the pump all losses may divide into the following several items: 1. Hydraulic loss by the liquid in pump impact, the turbulent flow a
20、nd the surface friction creates. The impact and the eddy current loss are because the liquid flow change direction produces. The liquid flows through the flow channel general meeting which contacts to present the surface friction, from this produces the energy loss is mainly decided by flow channels
21、 length, the size, the shape, the surface roughness, as well as liquid speed of flow and characteristic. 2. Volumetric loss: volumetric loss was already obtained the energy liquid to have a part to flee the result which in the pump the class and leaked outward. Pumps volumetric efficiency is 0.93 0.
22、98 generally. Improves the packing ring and the seal structure, may reduce the leakage, raises the volumetric efficiency. 3. Mechanical loss mechanical loss refers to the impeller lap side and the pump housing friction loss between the liquid, namely the disc loses, as well as pump spindle when packing, bearing and balancing unit and so on mechanical part movement friction loss, generally before primarily.