欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    单片机外文翻译---使用8051单片机验证和测试单粒子效应的加固工艺

    • 资源ID:123996       资源大小:79KB        全文页数:18页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    单片机外文翻译---使用8051单片机验证和测试单粒子效应的加固工艺

    1、PDF外文:http:/ Validation and Testing of Design Hardening for Single Event Effects Using the 8051 Microcontroller Abstract With the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper,

    2、we will discuss the implications of validating these methods for the single event effects ( SEE)  in the space environment. Topics include the types of tests that are required and the design coverage ( i.e., design libraries: do they need validating for each application?) . Finally, an 8051 mic

    3、rocontroller core from NASA Institute of Advanced Microelectronics ( IAE)  CMOS Ultra Low Power Radiation Tolerant ( Culprit)  design is evaluated for SEE mitigative techniques against two commercial 8051 devices.  Index Terms  Single Event Effects, Hardened-By-Design, microcontr

    4、oller, radiation effects. I. INTRODUCTION   NASA constantly strives to provide the best capture of science while operating in a space radiation environment using a minimum of resources 1,2. With a relatively limited selection of radiation-hardened microelectronic devices that are often two or m

    5、ore generations of performance behind commercial state-of-the-art technologies, NASAs performance of this task is quite challenging. One method of alleviating this is by the use of commercial foundry alternatives with no or minimally invasive design techniques for hardening. This is often called har

    6、dened-by-design ( HBD) .Building custom-type HBD devices using design libraries and automated design tools may provide NASA the solution it needs to meet stringent science performance specifications in a timely, cost-effective, and reliable manner.    However, one question still exists: tr

    7、aditional radiation-hardened devices have lot and/or wafer radiation qualification tests performed; what types of tests are required for HBD validation? II. TESTING HBD DEVICES CONSIDERATIONS   Test methodologies in the United States exist to qualify individual devices through standards and org

    8、anizations such as ASTM, JEDEC, and MIL-STD- 883. Typically, TID ( Co-60)  and SEE ( heavy ion and/or proton)  are required for device validation. So what is unique to HBD devices?   As opposed to a regular commercial-off-the-shelf ( COTS)  device or application specific integrat

    9、ed circuit ( ASIC)  where no hardening has been performed, one needs to determine how validated is the design library as opposed to determining the device hardness. That is, by using test chips, can we qualify a future device using the same library?   Consider if Vendor A has designed a ne

    10、w HBD library portable to foundries B and C. A test chip is designed, tested, and deemed acceptable. Nine months later a NASA flight project enters the mix by designing a new device using Vendor As library. Does this device require complete radiation qualification testing? To answer this, other ques

    11、tions must be asked.   How complete was the test chip? Was there sufficient statistical coverage of all library elements to validate each cell? If the new NASA design uses a partially or insufficiently characterized portion of the design library, full testing might be required. Of course, if pa

    12、rt of the HBD was relying on inherent radiation hardness of a process, some of the tests ( like SEL in the earlier example)  may be waived.    Other considerations include speed of operation and operating voltage. For example, if the test chip was tested statically for SEE at a power

    13、supply voltage of 3.3V, is the data applicable to a 100 MHz operating frequency at 2.5V? Dynamic considerations ( i.e., nonstatic operation)  include the propagated effects of Single Event Transients ( SETs) . These can be a greater concern at higher frequencies.   The point of the conside

    14、rations is that the design library must be known, the coverage used during testing is known, the test application must be thoroughly understood and the characteristics of the foundry must be known. If all these are applicable or have been validated by the test chip, then no testing may be necessary.

    15、 A task within NASAs Electronic Parts and Packaging ( NEPP)  Program was performed to explore these types of considerations. III. HBD TECHNOLOGY EVALUATION USING THE 8051 MICROCONTROLLER   With their increasing capabilities and lower power consumption, microcontrollers are increasingly bei

    16、ng used in NASA and DOD system designs. There are existing NASA and DOD programs that are doing technology development to provide HBD. Microcontrollers are one such vehicle that is being investigated to quantify the radiation hardness improvement. Examples of these programs are the 8051 microcontrol

    17、ler being developed by Mission Research Corporation ( MRC)  and the IAE ( the focus of this study) . As these HBD technologies become available, validation of the technology, in the natural space radiation environment, for NASAs use in spaceflight systems is required.   The 8051 microcontr

    18、oller is an industry standard architecture that has broad acceptance, wide-ranging applications and development tools available. There are numerous commercial vendors that supply this controller or have it integrated into some type of system-on-a-chip structure. Both MRC and IAE chose this device to

    19、 demonstrate two distinctly different technologies for hardening. The MRC example of this is to use temporal latches that require specific timing to ensure that single event effects are minimized. The IAE technology uses ultra low power, and layout and architecture HBD design rules to achieve their

    20、results. These are fundamentally different than the approach by Aeroflex-United Technologies Microelectronics Center ( UTMC) , the commercial vendor of a radiation hardened 8051, that built their 8051 microcontroller using radiation hardened processes. This broad range of technology within one devic

    21、e structure makes the 8051an ideal vehicle for performing this technology evaluation.   The objective of this work is the technology evaluation of the Culprit process 3 from IAE. The process has been baselined against two other processes, the standard 8051 commercial device from Intel and a version using state-of-the-art processing from Dallas Semiconductor. By performing this side-by-side comparison, the cost benefit, performance, and reliability trade study can be done.   In the performance of the technology evaluation, this task developed hardware and


    注意事项

    本文(单片机外文翻译---使用8051单片机验证和测试单粒子效应的加固工艺)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583