欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    毕业设计说明书外文翻译---时间和频率的基本原理

    • 资源ID:123950       资源大小:108.50KB        全文页数:17页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    毕业设计说明书外文翻译---时间和频率的基本原理

    1、 毕业设计 说明书 英文文献及中文翻译 学 院: 信息与通信工程 专 业: 电子信息科学与技术 2011 年 6 月 第 1 页 共 16 页 外文文献原文 Fundamentals of Time and Frequency Introduction Time and frequency standards supply three basic types of information : time-of-day, time interval, and frequency. Time-of-day information is provided in hours, minutes, and

    2、seconds, but often also includes the date (month, day, and year). A device that displays or records time-of-day information is called a clock. If a clock is used to label when an event happened, this label is sometimes called a time tag or time stamp. Date and time-of-day can also be used to ensure

    3、that events are synchronized, or happen at the same time. Time interval is the duration or elapsed time between two events. The standard unit of time interval is the second(s). However, many engineering applications require the measurement of shorter time intervals, such as milliseconds (1 ms = 10 -

    4、3 s) , microseconds (1 s = 10 -6 s) , nanoseconds (1 ns = 10 -9 s) , and picoseconds (1 ps = 10 -12 s). Time is one of the seven base physical quantities, and the second is one of seven base units defined in the International System of Units (SI). The definitions of many other physical quantities re

    5、ly upon the definition of the second. The second was once defined based on the earths rotational rate or as a fraction of the tropical year. That changed in 1967 when the era of atomic time keeping formally began. The current definition of the SI second is the duration of 9, 192, 631, 770 periods of

    6、 the radiation corresponding to the transition between two hyperfine levels of the ground state of the cesium-133 atom. Frequency is the rate of a repetitive event. If T is the period of a repetitive event, then the frequency f is its reciprocal, 1/T. Conversely, the period is the reciprocal of the

    7、frequency, T = 1/f. Since the period is a time interval expressed in seconds (s) , it is easy to see the close relationship between time interval and frequency. The 第 2 页 共 16 页 standard unit for frequency is the hertz (Hz) , defined as events or cycles per second. The frequency of electrical signal

    8、s is often measured in multiples of hertz, including kilohertz (kHz), megahertz (MHz), or gigahertz (GHz), where 1 kHz equals one thousand (103) events per second, 1 MHz equals one million (106) events per second, and 1 GHz equals one billion (109) events per second. A device that produces frequency

    9、 is called an oscillator. The process of setting multiple oscillators to the same frequency is called synchronization. Of course, the three types of time and frequency information are closely related. As mentioned, the standard unit of time interval is the second. By counting seconds, we can determi

    10、ne the date and the time-of-day. And by counting events or cycles per second, we can measure frequency. Time interval and frequency can now be measured with less uncertainty and more resolution than any other physical quantity. Today, the best time and frequency standards can realize the SI second w

    11、ith uncertainties of 1 10-15.Physical realizations of the other base SI units have much larger uncertainties. Coordinated Universal Time (UTC) The worlds major metrology laboratories routinely measure their time and frequency standards and send the measurement data to the Bureau International des Po

    12、ids et Measures (BIPM) in Sevres, France. The BIPM averages data collected from more than 200 atomic time and frequency standards located at more than 40 laboratories, including the National Institute of Standards and Technology (NIST). As a result of this averaging, the BIPM generates two time scales, International Atomic Time (TAI), and Coordinated Universal Time (UTC). These time scales realize the SI second as closely as possible. UTC runs at the same frequency as TAI. However, it differs from TAI by an integral number of seconds. This difference increases when leap seconds occur. When


    注意事项

    本文(毕业设计说明书外文翻译---时间和频率的基本原理)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583