欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    自动化专业外文翻译--运算放大器

    • 资源ID:120194       资源大小:503KB        全文页数:10页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    自动化专业外文翻译--运算放大器

    1、UNIT 2 A: The Operational Amplifier One problem with electronic devices corresponding to the generalized amplifiers is that the gains, Au or A, depend upon internal properties of the two-port system (p, fl, R, Ro, etc.)? This makes design difficult since these parameters usually vary from device to

    2、device, as well as with temperature. The operational amplifier, or Op-Amp, is designed to minimize this dependence and to maximize the ease of design. An Op-Amp is an integrated circuit that has many component part such as resistors and transistors built into the device. At this point we will make n

    3、o attempt to describe these inner workings. A totally general analysis of the Op-Amp is beyond the scope of some texts. We will instead study one example in detail, then present the two Op-Amp laws and show how they can be used for analysis in many practical circuit applications. These two principle

    4、s allow one to design many circuits without a detailed understanding of the device physics. Hence, Op-Amps are quite useful for researchers in a variety of technical fields who need to build simple amplifiers but do not want to design at the transistor level. In the texts of electrical circuits and

    5、electronics they will also show how to build simple filter circuits using Op-Amps. The transistor amplifiers, which are the building blocks from which Op-Amp integrated circuits are constructed, will be discussed. The symbol used for an ideal Op-Amp is shown in Fig. 1-2A-1. Only three connections ar

    6、e shown: the positive and negative inputs, and the output. Not shown are other connections necessary to run the Op-Amp such as its attachments to power supplies and to ground potential. The latter connections are necessary to use the Op-Amp in a practical circuit but are not necessary when consideri

    7、ng the ideal 0p-Amp applications we study in this chapter. The voltages at the two inputs and the output will be represented by the symbols U+, U-, and Uo. Each is measured with respect t ground potential. Operational amplifiers are differential devices. By this we mean that the output voltage with

    8、respect to ground is given by the expression Uo =A(U+ -U-) (1-2A-l) where A is the gain of the Op-Amp and U+ and U - the voltages at inputs. In other words, the output voltage is A times the difference in potential between the two inputs. Integrated circuit technology allows construction of many amp

    9、lifier circuits on a single composite chip of semiconductor material. One key to the success of an operational amplifier is the cascading of a number of transistor amplifiers to create a very large total gain. That is, the number A in Eq. (1-2A-1) can be on the order of 100,000 or more. (For example

    10、, cascading of five transistor amplifiers, each with a gain of 10, would yield this value for A.) A second important factor is that these circuits can be built in such a way that the current flow into each of the inputs is very small. A third important design feature is that the output resistance of

    11、 the operational amplifier (Ro) is very small. This in turn means that the output of the device acts like an ideal voltage source. We now can analyze the particular amplifier circuit given in Fig. 1-2A-2 using these characteristics. First, we note that the voltage at the positive input, U +, is equa

    12、l to the source voltage, U + = Us. Various currents are defined in part b of the figure. Applying KVL around the outer loop in Fig. 1-2A-2b and remembering that the output voltage, Uo, is measured with respect to ground, we have -I1R1-I2R2+U0=0 (1-2A-2) Since the Op-Amp is constructed in such a way

    13、that no current flows into either the positive or negative input, I- =0. KCL at the negative input terminal then yields I1 = I2 Using Eq. (1-2A-2) and setting I1 =I2 =I, U0=(R1+R2)I (1-2A-3) We may use Ohms law to find the voltage at the negative input, U-, noting the assumed current direction and t

    14、he fact that ground potential is zero volts: (U-0)/ R1=I So, U-=IR1 and from Eq. (1-2A-3), U- =R1/(R1+R2) U0 Since we now have expressions for U+ and U-, Eq. (1-2A-l) may be used to calculate the output voltage, U0 = A( U+-U-) =AUS-R1U0/(R1+R2) Gathering terms, U0 =1+AR1/(R1+R2)= AUS (1-2A-4) and fi

    15、nally, AU = U0/US= A(R1+R2)/( R1+R2+AR1) (1-2A-5a) This is the gain factor for the circuit. If A is a very large number, large enough that AR (R1+R2),the denominator of this fraction is dominated by the AR term. The factor A, which is in both the numerator and denominator, then cancels out and the g

    16、ain is given by the expression AU =(R1+R2)/ R1 (1-2A-5b) This shows that if A is very large, then the gain of the circuit is independent of the exact value of A and can be controlled by the choice of R1and R2. This is one of the key features of Op-Amp design the action of the circuit on signals depe

    17、nds only upon the external elements which can be easily varied by the designer and which do not depend upon the detailed character of the Op-Amp itself. Note that if A=100 000 and (R1 +R2)/R1=10, the price we have paid for this advantage is that we have used a device with a voltage gain of 100 000 to produce an amplifier with a gain of 10. In some sense, by using an Op-Amp we trade off power for control. A similar mathematical analysis can be made on any Op-Amp circuit, but this is


    注意事项

    本文(自动化专业外文翻译--运算放大器)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583