欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译--拥塞控制中的算法

    • 资源ID:120159       资源大小:32.32KB        全文页数:7页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译--拥塞控制中的算法

    1、 译文 2 The Algorithm of Congestion Control 1 Tahoe TCP Modern TCP implementations contain a number of algorithms aimed at controlling network congestion while maintaining good user throughput. Early TCP implementations followed a go-back-n.model using cumulative positive acknowledgment and requiring

    2、a retransmit timer expiration to re-send data lost during transport. These TCPs did little to minimize network congestion. The Tahoe TCP implementation added a number of new algorithms and refinements to earlier implementations. The new algorithms includeSlow-Start, Congestion Avoidance, and Fast Re

    3、transmit. The refinements include a modification to the round-trip time estimator used to set retransmission timeout values. All modifications have been described elsewhere. The Fast Retransmit algorithm is of special interest in this paper because it is modified subsequent versions of TCP. With Fas

    4、t Retransmit, after receiving a small number of duplicate acknowledgments for the same TCPsegment (dup ACKs), the data sender infers that a packet has been lost and retransmits the packet without waiting for a retransmission timer to expire, leading to higher channel utilization and connection throu

    5、ghput. 2 Reno TCP The Reno TCP implementation retained the enhancements incorporated into Tahoe, but modified the Fast Retransmit operation to include Fast Recovery. The new algorithm prevents the communication path (“pipe”) from going empty after Fast Retransmit, thereby avoiding the need to Slow-S

    6、tart to refill it after a single packet loss. Fast Recovery operates by assuming each dup ACK received represents a single packet having left the pipe. Thus, during Fast Recovery the TCP sender is able to make intelligent estimates of the amount of outstanding data. In Reno, the senders usable windo

    7、w becomesother gateways that fail to monitor the average queue size) until the number of dup ACKs reaches tcprexmtthresh, and thereafter tracks the number of duplicate ACKs. Thus, during Fast Recovery the sender “inflate” its window by the number of dup ACKs it has received, according to the observa

    8、tion that each dup ACK indicates some packet has been removed from the network and is now cached at the receiver. After entering Fast Recovery and retransmitting a single packet, the sender effectively waits until half a window of dup ACKs have been received, and then sends a new packet for each add

    9、itional dup ACK that is received. 3 New-Reno TCP We include New-Reno TCP in this paper to show how a simple change to TCP makes it possible to avoid some of the performance problems of Reno TCP without the addition of SACK. At the same time, we use New-Reno TCP to explore the fundamental limitations

    10、 of TCP performance in the absence of SACK. The New-Reno TCP in this paper includes a small change to the Reno algorithm at the sender that eliminates Renos wait for a retransmit timer when multiple packets are lost from a window. The change concerns the senders behavior during Fast Recovery when a

    11、partial ACK is received that acknowledges some but not all of the packets that were out-standing at the start of that Fast Recovery period. In Reno, partial ACKs take TCP out of Fast Recovery by “deflating” the usable window back to the size of the congestion window. In New-Reno, partial ACKs do not

    12、 take TCP out of Fast Recovery. Instead, partial ACKs received during Fast Recovery are treated as an indication that the packet immediately following the acknowledged packet in the sequence space has been lost, and should be retransmitted. Thus, when multiple packets are lost from a single window o

    13、f data, New-Reno can recover without a retransmission timeout, retransmitting one lost packet per round-trip time until all of the lost packets from that window have been retransmitted. New-Reno remains in Fast Recovery until all of the data outstanding when Fast Recovery was initiated has been acknowledged. The implementations of New-Reno and SACK TCP in our simulator also use a “maxburst” parameter. In our SACK TCP implementation, the “maxburst” parameter limits to four the number of packets that can be sent in response to a single incoming


    注意事项

    本文(外文翻译--拥塞控制中的算法)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583