欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    模糊控制外文翻译--模糊的比较研究控制,PID控制,先进的模糊控制用于模拟核反应堆运行

    • 资源ID:120005       资源大小:1.40MB        全文页数:21页
    • 资源格式: DOC        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    模糊控制外文翻译--模糊的比较研究控制,PID控制,先进的模糊控制用于模拟核反应堆运行

    1、附录 CONTROL, PID CONTROL, AND ADVANCED FUZZY CONTROL FOR SIMULATING A NUCLEAR REACTOR OPERATION XIAOZHONG LI and DA RUAN* elgian Nuclear Research Centre (SCKoCEN Boeretang 200, 8-2400 Mol, Belgium (Received 15 March 1999) Based on the background of fuzzy control applications to the first nuclear reac

    2、tor in Belgium (BRI) at the Belgian Nuclear Research Centre (SCK.CEN), we have made a real fuzzy logic control demo model. The demo model is suitable for us to test and com- pare some new algorithms of fuzzy control and intelligent systems, which is advantageous because it is always difficult and ti

    3、me-consuming, due to safety aspects, to do all experiments in a real nuclear environment. In this paper, we first report briefly on the construction of the demo model, and then introduce the results of a fuzzy control, a proportional-integral-derivative (PID) control and an advanced fuzzy control, i

    4、n which the advanced fuzzy control is a fuzzy control with an adaptive function that can Self-regulate the fuzzy control rules. Afterwards, we present a comparative study of those three methods. The results have shown that fuzzy control has more advantages in terms of flexibility, robustness, and ea

    5、sily updated facilities with respect to the PID control of the demo model, but that PID control has much higher regulation resolution due to its integration term. The adaptive fuzzy control can dynamically adjust the rule base, therefore it is more robust and suitable to those very uncertain occasio

    6、ns. Keywords: Fuzzy control; PID control; fuzzy adaptive control; nuclear reactor I INTRODUCTION Today the techniques of fuzzy logic control are very mature in most engineering areas, but not in nuclear engineering, though some research has been done (Bernard, 1988; Hah and Lee, 1994; Lin et al. 199

    7、7; Matsuoka, 1990). The main reason is that it is impossible to do experiments in nuclear engineering as easily as in other industrial areas. For example, a reactor is usually not available to any individual. Even for specialists in nuclear engineering, an official licence for doing any on-line test

    8、 is necessary. That is why we are still conducting projects such as fuzzy logic control application in BRl (the first nuclear reactor in Belgium) (Li and Ruan, 1997a; Ruan, 1995; Ruan and Li, 1997; 1998; Ruan and van der Wal, 1998). In the framework of this project, we find that although there are a

    9、lready many fuzzy logic control applications, it is difficult to select the most sui- table for testing and comparison of our algorithms. Moreover, due to the safety regulations of the nuclear reactor, it is not realistic to perform many experiments in BRl. In this situation, we have to conduct part

    10、 of the pre-processing experiments outside the reactor, e.g., com- parisons of different methods and the preliminary choices of the parameters. One solution is to make a simulation programme in a computer, but this has the disadvantage that in which, however, the real time property cannot be well re

    11、flected. Therefore another solution has adopted, that is, we designed and made a water-level control system, referred to as the demo model, which is suitable for our testing and experiments. In particular, this demo model (Fig. 1) is designed to simulate the power control principle of BRl (Li et al.

    12、, 1996a,b; Li and Ruan, 1997b). In this demo model, our goal was to control the water level in tower TI at a desired level by means of tuning VL (the valve for large control tower T2) and VS (the valve for small control tower T3). The pump keeps on working to supply water to T2 and T3. All taps are

    13、for manual tuning at this time. VI and V2 valves are used to control the water levels in T2 and T3 respectively. For example, when the water level in T2 is lower than photoelectric switch sensor 1 then the on-off valve V, will be opened (on), and when the water level in T2 is higher than photoelectr

    14、ic switch sensor 2 then the on-off valve Vl will be closed (off). The same is true of V2. Only when both VI and V2 are closed V3 will be opened, because it can decrease the pressure of the pump and thereby prolong its working life. The pressure sensor is used to detect the height of water level in T

    15、I. So for TI, it is a dynamic system with two entrances and one exit for water flow. COMPARATIVE STUDY OF FUZZY CONTROL The Demo Model Structure FIGURE 1 The working principle of the demo model. BRI is a 42-year old research reactor, in which the control method is the simple on-off method. Many meth

    16、ods called traditional meth- ods, when compared to fuzzy logic, are still very new to the BR1 reactor. One of these, proportional-integral-derivative (PID) control, has to be tested as well as fuzzy logic method. So far, we have tested the normal fuzzy control, traditional PID control, and an advanced fuzzy control on this demo model. To obtain a better demonstration, these three approaches have been programmed and integrated into one con- roller system based on the programmable logic controller (PLC) of the OMRON company. The purpose of tlus paper is to report comparative


    注意事项

    本文(模糊控制外文翻译--模糊的比较研究控制,PID控制,先进的模糊控制用于模拟核反应堆运行)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583