欢迎来到毕设资料网! | 帮助中心 毕设资料交流与分享平台
毕设资料网
全部分类
  • 毕业设计>
  • 毕业论文>
  • 外文翻译>
  • 课程设计>
  • 实习报告>
  • 相关资料>
  • ImageVerifierCode 换一换
    首页 毕设资料网 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    外文翻译---用选择性氧化或溶解分离非金属矿物和硫化砷铜矿

    • 资源ID:115641       资源大小:349.42KB        全文页数:24页
    • 资源格式: DOCX        下载积分:100金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    下载资源需要100金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

    外文翻译---用选择性氧化或溶解分离非金属矿物和硫化砷铜矿

    1、Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution D. Fornasiero , D. Fullston , C. Li, J. Ralston a Ian Wark Research Institute, the ARC Special Research Centre for Particle and Material Interfaces, Uniersity of South Australia, The

    2、Mawson Lakes Campus, Mawson Lakes, S.A. 5095,Australia Rio Tinto Technology Development, Research Ae., Bundoora, Vic., 3083, Australia Received 10 March 2000; accepted 19 July 2000 Abstract Selective oxidation of minerals was investigated as a means to separate by flotation the copper sulfide minera

    3、ls of chalcocite, covellite and chalcopyrite from the arsenic copper sulfide minerals of enargite and tennantite in mixed mineral systems. It was found that a separation of these minerals could be feasible after selective oxidation of their surfaces in slightly acidic pH conditions, or after oxidati

    4、on and selective dissolution of the surface oxidation products with a complexant in basic pH conditions. q2001 Elsevier Science B.V. All rights reserved. Keywords: Selective flotation; Copper sulfide minerals; Tennantite; Enargite; Oxidation; X-ray photoelectron spectroscopy 1. Introduction Arsenic

    5、is an undesirable element that causes serious toxicological and environmental problems in smelting of arsenic-containing minerals e.g., Padilla et al., 1998; Dutre and Vandecasteele, 1995 . Although hydrometallurgy or pyrometallurgy could be used to remove this element, increasing severity of enviro

    6、nmental legislation has resulted in a progressive reduction of the amount of arsenic allowable in processing bi-products( Morizot and Ollivier, 1993) . As a result, high financial penalties are imposed by smelters to treat copper ores containing higher than 0.2 wt.% arsenic ( Wilson and Chanroux, 19

    7、93 . ) It would be more economically and environmentally beneficial to remove the minerals containing arsenic at an earlier stage such as during flotation. Their separation is nevertheless difficult as they generally have similar flotation behaviour to the valuable minerals with which they are assoc

    8、iated. This is the case in separating arsenopyrite (FeAsS) from pyrite, or removing enargite( Cu3 AsS4) and tennantite( Cu12 As4 S13) from covellite( CuS) , chalcocite( Cu2 S) and chalcopyrite( CuFeS2) . Apart from arsenopyrite, the amount of literature dealing with the separation of arsenic mineral

    9、s is scarce. One of the potential separation methods relies on the selective oxidation of sulfide minerals due to differences in their electrochemical properties ( e.g., Tolley et al.,1996; Byrne et al., 1995; Kydros et al., 1993; Wang et al., 1992; Beattie and Poling, 1988; Guongming and Hongen, 19

    10、89; Chander, 1985) .Oxidation can promote the adsorption of collectors, such as xanthate, at low to moderate levels of oxidation, or prevent their adsorption at high levels of oxidation by creating a physical barrier of oxidation products for their diffusion to the mineral surface. The oxidation beh

    11、aviour of non-arsenic copper sulfide minerals(chalcocite, covellite and chalcopyrite) is well established (e.g., Richardson and Walker, 1985; Hamilton and Woods, 1984) ,whereas only a limited amount of literature is available on the oxidation of enargite and tennantite (Fullston et al., 1999a; Cordo

    12、va et al., 1997; Mielczarski et al., 1996a) . A recent study on these minerals has shown that their rate of oxidation at pH 11.0 follows the order: chalcocite tennantiteenargitecovellitechalcopyrite (Fullston et al., 1999b) .This order, for the non-arsenic minerals, is in agreement with that of thei

    13、r rest potential value or their flotation response in the absence or presence of collectors(Crozier, 1995; Majima, 1969) . Furthermore, it was reported that xanthate collector adsorbs more on chalcopyrite than on tennantite (Mielczarski et al., 1996b) .For a similar flotation system containing antimony copper sulfides, a satisfactory separation of chalcopyrite from tetrahedrite (Cu12Sb4S13 , the antimony analogue of tennantite). was obtained and was attributed to the faster oxidation rate of tetrahedrite than


    注意事项

    本文(外文翻译---用选择性氧化或溶解分离非金属矿物和硫化砷铜矿)为本站会员(泛舟)主动上传,毕设资料网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请联系网站客服QQ:540560583,我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们
    本站所有资料均属于原创者所有,仅提供参考和学习交流之用,请勿用做其他用途,转载必究!如有侵犯您的权利请联系本站,一经查实我们会立即删除相关内容!
    copyright@ 2008-2025 毕设资料网所有
    联系QQ:540560583